本文目录一览

1,什么是勾股数

满足 a方+ b方= c方

{0}

2,勾股数有哪些

常见的勾股数有:(3 4 5 )、(5 12 13 )、(7 24 25)、(9 40 41 )、(11 60 61 )、(13 84 85 )。勾股数又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a2+b2=c2)。勾股定理的日常应用:(1)理解方向角等概念,根据题意画出图形,利用定理或逆定理解决航海中距离问题。(2)判定实际问题中两线段是否垂直的问题。以已知线段为边构造三角形,根据三边的长度,利用勾股定理的逆定理解题。(3)解决折叠问题。正确画出折叠前、后的图形,运用勾股定理及方程的思想,用代数方法解题 。(4)圆柱侧面上两点问题。转化为将侧面展开成平面长方形,构造直角三角形,利用勾股定理解决。(5)其它涉及直角三角形的问题。

{1}

3,什么叫勾股数

一般说是不定方程a平方加b平方等于c平方的正整数解

{2}

4,常用勾股数有哪些

数学常用勾股数如下:1、(3、4、5) (6、8、10)(5、12、13)2、(8、15、17) (7、24、25)(9、40、41) 3、(10、24、26)(11、60、61) 4、(12、35、37)(48、55、73)5、(12、16、20)(13、84、85)6、(20、21、29)(20、99、101)7、(60、91、109)(15、112、113)扩展资料:勾股数是勾股定理中的三角形三边a,b,c满足a2=b2+c2(a为斜边)。寻找满足勾股定理的勾股数时,可以通过以下方法:1、当a为大于1的奇数2n+1时,b=2n2+2n, c=2n2+2n+1。实际上就是把a的平方数拆成两个连续自然数,例如:n=1时(a,b,c)=(3,4,5)n=2时(a,b,c)=(5,12,13)n=3时(a,b,c)=(7,24,25)由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。2、当a为大于4的偶数2n时,b=n2-1, c=n2+1也就是把a的一半的平方分别减1和加1,例如:n=3时(a,b,c)=(6,8,10)n=4时(a,b,c)=(8,15,17)n=5时(a,b,c)=(10,24,26)当n为奇数时由于(a,b,c)是三个偶数,所以该勾股数组必然不是互质的。3、如果只想得到互质的数组,可以将第二条公式改成:对于a=4n (大于等于2), b=4n2-1, c=4n2+1,例如:n=2时(a,b,c)=(8,15,17)n=3时(a,b,c)=(12,35,37)n=4时(a,b,c)=(16,63,65)参考资料来源:百度百科-勾股数

5,什么是勾股数

直角三角形边长符合勾股定理,直角边a,b.斜边c,有c2=a2+b2,边长既为够股数。如勾3股4弦5,有52=32+42
3 4 5: 32+42=52 5 12 13 52+122=132 这样的整数满足两个数的平方和等于第三个数的平方的三个数叫一组勾股数
在直角三形中,一条直角边的平方加另一条直角边的平方等于斜边的平方,写成式子是:a平方+b 平方=c平方如:3平方+4平方=5平方 5平方+12平方=13平方
3,4,5 5,12,13 等两个数平方和等于第三个数的

6,常用的勾股数有哪些

345i=3 j=4 k=5 i=5 j=12 k=13 i=6 j=8 k=10 i=7 j=24 k=25 i=8 j=15 k=17 i=9 j=12 k=15 i=9 j=40 k=41 i=10 j=24 k=26 i=11 j=60 k=61 i=12 j=16 k=20 i=12 j=35 k=37 i=13 j=84 k=85 i=14 j=48 k=50 i=15 j=20 k=25 i=15 j=36 k=39 i=16 j=30 k=34 i=16 j=63 k=65 i=18 j=24 k=30 i=18 j=80 k=82 i=20 j=21 k=29 i=20 j=48 k=52 i=21 j=28 k=35 i=21 j=72 k=75 i=24 j=32 k=40 i=24 j=45 k=51 i=24 j=70 k=74 i=25 j=60 k=65 i=27 j=36 k=45 i=28 j=45 k=53 i=30 j=40 k=50 i=30 j=72 k=78 i=32 j=60 k=68 i=33 j=44 k=55 i=33 j=56 k=65 i=35 j=84 k=91 i=36 j=48 k=60 i=36 j=77 k=85 i=39 j=52 k=65 i=39 j=80 k=89 i=40 j=42 k=58 i=40 j=75 k=85 i=42 j=56 k=70 i=45 j=60 k=75 i=48 j=55 k=73 i=48 j=64 k=80 i=51 j=68 k=85 i=54 j=72 k=90 i=57 j=76 k=95 i=60 j=63 k=87 i=65 j=72 k=97常见的几种通式:(1) (3, 4, 5), (6, 8,10) … … 3n,4n,5n (n是正整数) (2) (5,12,13) ,( 7,24,25), ( 9,40,41) … … 2n + 1, 2n^2 + 2n, 2n^2 + 2n + 1 (n是正整数) (3) (8,15,17), (12,35,37) … … 2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1 (n是正整数) (4)m^2-n^2,2mn,m^2+n^2 (m、n均是正整数,m>n) i=3 j=4 k=5 i=5 j=12 k=13 i=6 j=8 k=10 i=7 j=24 k=25 i=8 j=15 k=17 i=9 j=12 k=15 i=9 j=40 k=41 i=10 j=24 k=26 i=11 j=60 k=61 i=12 j=16 k=20 i=12 j=35 k=37 i=13 j=84 k=85 i=14 j=48 k=50 i=15 j=20 k=25 i=15 j=36 k=39 i=16 j=30 k=34 i=16 j=63 k=65 i=18 j=24 k=30 i=18 j=80 k=82 i=20 j=21 k=29 i=20 j=48 k=52 i=21 j=28 k=35 i=21 j=72 k=75 i=24 j=32 k=40 i=24 j=45 k=51 i=24 j=70 k=74 i=25 j=60 k=65 i=27 j=36 k=45 i=28 j=45 k=53 i=30 j=40 k=50 i=30 j=72 k=78 i=32 j=60 k=68 i=33 j=44 k=55 i=33 j=56 k=65 i=35 j=84 k=91 i=36 j=48 k=60 i=36 j=77 k=85 i=39 j=52 k=65 i=39 j=80 k=89 i=40 j=42 k=58 i=40 j=75 k=85 i=42 j=56 k=70 i=45 j=60 k=75 i=48 j=55 k=73 i=48 j=64 k=80 i=51 j=68 k=85 i=54 j=72 k=90 i=57 j=76 k=95 i=60 j=63 k=87 i=65 j=72 k=97常见的几种通式:(1) (3, 4, 5), (6, 8,10) … … 3n,4n,5n (n是正整数) (2) (5,12,13) ,( 7,24,25), ( 9,40,41) … … 2n + 1, 2n^2 + 2n, 2n^2 + 2n + 1 (n是正整数) (3) (8,15,17), (12,35,37) … … 2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1 (n是正整数) (4)m^2-n^2,2mn,m^2+n^2 (m、n均是正整数,m>ni=3 j=4 k=5 i=5 j=12 k=13 i=6 j=8 k=10 i=7 j=24 k=25 i=8 j=15 k=17 i=9 j=12 k=15 i=9 j=40 k=41 i=10 j=24 k=26 i=11 j=60 k=61 i=12 j=16 k=20 i=12 j=35 k=37 i=13 j=84 k=85 i=14 j=48 k=50 i=15 j=20 k=25 i=15 j=36 k=39 i=16 j=30 k=34 i=16 j=63 k=65 i=18 j=24 k=30 i=18 j=80 k=82 i=20 j=21 k=29 i=20 j=48 k=52 i=21 j=28 k=35 i=21 j=72 k=75 i=24 j=32 k=40 i=24 j=45 k=51 i=24 j=70 k=74 i=25 j=60 k=65 i=27 j=36 k=45 i=28 j=45 k=53 i=30 j=40 k=50 i=30 j=72 k=78 i=32 j=60 k=68 i=33 j=44 k=55 i=33 j=56 k=65 i=35 j=84 k=91 i=36 j=48 k=60 i=36 j=77 k=85 i=39 j=52 k=65 i=39 j=80 k=89 i=40 j=42 k=58 i=40 j=75 k=85 i=42 j=56 k=70 i=45 j=60 k=75 i=48 j=55 k=73 i=48 j=64 k=80 i=51 j=68 k=85 i=54 j=72 k=90 i=57 j=76 k=95 i=60 j=63 k=87 i=65 j=72 k=97常见的几种通式:(1) (3, 4, 5), (6, 8,10) … … 3n,4n,5n (n是正整数) (2) (5,12,13) ,( 7,24,25), ( 9,40,41) … … 2n + 1, 2n^2 + 2n, 2n^2 + 2n + 1 (n是正整数) (3) (8,15,17), (12,35,37) … … 2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1 (n是正整数) (4)m^2-n^2,2mn,m^2+n^2 (m、n均是正整数,m>n) i=3 j=4 k=5 i=5 j=12 k=13 i=6 j=8 k=10 i=7 j=24 k=25 i=8 j=15 k=17 i=9 j=12 k=15 i=9 j=40 k=41 i=10 j=24 k=26 i=11 j=60 k=61 i=12 j=16 k=20 i=12 j=35 k=37 i=13 j=84 k=85 i=14 j=48 k=50 i=15 j=20 k=25 i=15 j=36 k=39 i=16 j=30 k=34 i=16 j=63 k=65 i=18 j=24 k=30 i=18 j=80 k=82 i=20 j=21 k=29 i=20 j=48 k=52 i=21 j=28 k=35 i=21 j=72 k=75 i=24 j=32 k=40 i=24 j=45 k=51 i=24 j=70 k=74 i=25 j=60 k=65 i=27 j=36 k=45 i=28 j=45 k=53 i=30 j=40 k=50 i=30 j=72 k=78 i=32 j=60 k=68 i=33 j=44 k=55 i=33 j=56 k=65 i=35 j=84 k=91 i=36 j=48 k=60 i=36 j=77 k=85 i=39 j=52 k=65 i=39 j=80 k=89 i=40 j=42 k=58 i=40 j=75 k=85 i=42 j=56 k=70 i=45 j=60 k=75 i=48 j=55 k=73 i=48 j=64 k=80 i=51 j=68 k=85 i=54 j=72 k=90 i=57 j=76 k=95 i=60 j=63 k=87 i=65 j=72 k=97常见的几种通式:(1) (3, 4, 5), (6, 8,10) … … 3n,4n,5n (n是正整数) (2) (5,12,13) ,( 7,24,25), ( 9,40,41) … … 2n + 1, 2n^2 + 2n, 2n^2 + 2n + 1 (n是正整数) (3) (8,15,17), (12,35,37) … … 2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1 (n是正整数) (4)m^2-n^2,2mn,m^2+n^2 (m、n均是正整数,m>n)

7,勾股数是什么

勾股数又名毕氏三元数   凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。
2 2 2 a +b =c 符合这个等式的abc 就是勾股数
勾三股四弦五 数学上勾股定理用到的 比如3.4.5. 6.8.10. 5.12.13. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~就是这样
就是 两个较小数的平方和会等于第三数的平方

8,什么是勾股数

勾三股四玄五
勾股数是指构成直角三角形的三条边的长度都是正整数,且较小的两个数的平方和等于最大数的平方。 如3,4,5;6,8,10;5,12,13;7,24,25....或2N,N平方-1,N平方+1(Nj是大于或等于2的自然数)等。
就是在一个直角三角形中,两条直角边的平方加起来等于斜边的平方,就是勾股数
最基本的构成直角三角形三边的整数:345\5.12.13\7.24.25\9.40.41
最大那个数的平方=其余两个数的平方和 就是直角三角形的三边我们叫勾股数的

9,什么是勾股数

凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。
就是 勾股樹
A平方+B平方=C平方 A B C 就是勾股数 例如 3 4 5
我也不太懂.a^2+b^2=c^2~
所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(a,b,c)。 即a^2+b^2=c^2,a,b,c∈N 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。 关于这样的数组,比较常用也比较实用的套路有以下两种: 1、当a为大于1的奇数2n+1时,b=2*n^2+2*n, c=2*n^2+2*n+1。 实际上就是把a的平方数拆成两个连续自然数,例如: n=1时(a,b,c)=(3,4,5) n=2时(a,b,c)=(5,12,13) n=3时(a,b,c)=(7,24,25) ... ... 这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。 2、当a为大于4的偶数2n时,b=n^2-1, c=n^2+1 也就是把a的一半的平方分别减1和加1,例如: n=3时(a,b,c)=(6,8,10) n=4时(a,b,c)=(8,15,17) n=5时(a,b,c)=(10,24,26) n=6时(a,b,c)=(12,35,37) ... ... 这是次经典的套路,当n为奇数时由于(a,b,c)是三个偶数,所以该勾股数组必然不是互质的;而n为偶数时由于b、c是两个连续奇数必然互质,所以该勾股数组互质。 所以如果你只想得到互质的数组,这条可以改成,对于a=4n (n>=2), b=4*n^2-1, c=4*n^2+1,例如: n=2时(a,b,c)=(8,15,17) n=3时(a,b,c)=(12,35,37) n=4时(a,b,c)=(16,63,65)

10,什么叫做勾股数

3^2+4^2=5^2 3,4,5, 6,8,10, 5,12,13
在直角三角形中,若以a、b表示两条直角边,c表示斜边,勾股定理可以表述为a2(2是平方的意思)+b2=c2。 满足这个等式的正整数a、b、c叫做一组勾股数。 例如(3、4、5),(5、12、13),(6、8、10),(7、24、25)等一组一组的数,每一组都能满足a2+b2=c2,因此它们都是勾股数组(其中3、4、5是最简单的一组勾股数)。显然,若直角三角形的边长都为正整数,则这三个数便构成一组勾股数;反之,每一组勾股数都能确定一个边长是正整数的直角三角形。因此,掌握确定勾股数组的方法对研究直角三角形具有重要意义。 1.任取两个正整数m、n,使2mn是一个完全平方数,那么 c=2+9+6=17。 则8、15、17便是一组勾股数。 证明: ∴a、b、c构成一组勾股数 2.任取两个正整数m、n、(m>n),那么 a=m2-n2,b=2mn,c=m2+n2构成一组勾股数。 例如:当m=4,n=3时, a=42-32=7,b=2×4×3=24,c=42+32=25 则7、24、25便是一组勾股数。 证明: ∵ a2+b2=(m2-n2)+(2mn)2 =m4-2m2n2+n4+4m2n2 =m4+2m2n2+4n2 =(m2+n2)2 =c2 ∴a、b、c构成一组勾股数。 3.若勾股数组中的某一个数已经确定,可用如下的方法确定另外两个数。 首先观察已知数是奇数还是偶数。 (1)若是大于1的奇数,把它平方后拆成相邻的两个整数,那么奇数与这两个整数构成一组勾股数。 例如9是勾股数中的一个数, 那么9、40、41便是一组勾股数。 证明:设大于1的奇数为2n+1,那么把它平方后拆成相邻的两个整数为 (2)若是大于2的偶数,把它除以2后再平方,然后把这个平方数分别减1,加1所得到的两个整数和这个偶数构成一组勾股数。 例如8是勾股数组中的一个数。 那么8、15,17便是一组勾股数。 证明:设大于2的偶数2n,那么把这个偶数除以2后再平方,然后把这个平方数分别减1,加1所得的两个整数为n2-1和n2+1

文章TAG:勾股数  什么  勾股数  
下一篇