本文目录一览

1,高中物理必修2复习提纲

高中物理必修2复习提纲 http://wenku.baidu.com/view/188debd6b14e852458fb5767.html

高中物理必修2复习提纲

2,高中物理人教版必修二有哪几章

五,曲线运动。六,万有引力与航天。 七,机械能守恒定律
第五章 曲线运动第六章 万有引力与航天第七章 机械能与能量守恒

高中物理人教版必修二有哪几章

3,高一物理必修2学习方法高手进

一个方法啦。多做题并且做好自己的错题本/题型本。 虽然看上去蛮简单的。可是坚持下去不容易噢。我本来物理超级差的。 但现在感觉很好。 基本上跟着老师同步做了3本练习。效果真的很显著!

高一物理必修2学习方法高手进

4,高一物理必修二知识点总结

建议你去这里看看 http://www.chinaedu.com/
http://wenwen.sogou.com/z/q716358707.htm 里面很丰富,提问以后先看看别的地方,JUST LIKE BAIDU
建议去买本参考书 题典就不错……

5,求高中物理必修二所有公式含推导公式

电磁学常用公式 库仑定律:F=kQq/r 电场强度:E=F/q 点电荷电场强度:E=kQ/r 匀强电场:E=U/d 电势能:E =qφ 电势差:U =φ-φ 静电力做功:W=qU 电容定义式:C=Q/U 电容:C=εS/4πkd 带电粒子在匀强电场中的运动 加速匀强电场:1/2*mv =qU v =2qU/m 偏转匀强电场: 运动时间:t=x/v 垂直加速度:a=qU/md 垂直位移:y=1/2*at =1/2*(qU/md)*(x/v) 偏转角:θ=v⊥/v=qUx/md(v) 微观电流:I=nesv 电源非静电力做功:W=εq 欧姆定律:I=U/R 串联电路 电流:I =I =I = …… 电压:U =U U U …… 并联电路 电压:U=U=U= …… 电流:I =I I I …… 电阻串联:R =R R R …… 电阻并联:1/R =1/R 1/R 1/R …… 焦耳定律:Q=I Rt P=I R P=U /R 电功率:W=UIt 电功:P=UI 电阻定律:R=ρl/S 全电路欧姆定律:ε=I(R r) ε=U外 U内 安培力:F=ILBsinθ 磁通量:Φ=BS 电磁感应 感应电动势:E=nΔΦ/Δt 导线切割磁感线:ΔS=lvΔt E=Blv*sinθ 感生电动势:E=LΔI/Δt

6,高一物理必修二有哪些重难点

一. 基本概念的复习 质点 定义:用来代替物体有质量的点。 条件: 当物体的大小和形状对研究的问题无影响或者影响不大时,物体就可以看成质点了。 结论 :物体通常能看成质点的情况有 (1)物体的大小与它的运动空间相比小的多时(2)关心的是整个物体(3)一个物体的各个部分的运动情况都相同时。 物体通常不能看成质点的情况有 (1)关心的是物体的某一部分(2)物体本身发生转动 注意:.质点是一种理想模型,实际不存在。 参考系 定义:为了研究物体的运动情况,而假定为不动的物体(或者说是为了研究物体的运动情况,用来当作标准的物体. 特点:(1)参考系就是初中学习过的参照物(2)参考系是可以任选的(3)研究与地面有关的物体时通常选地面为参考系. 坐标系:作用为了描述物体的位置. 时刻和时间间隔 时刻和时间间隔的区别:时刻在时间轴上用点来表示,而时间用线段来表示. 路程和位移: 定义:路程是指物体运动轨迹的长度,或者说是指物体实际运动路径的长度. 位移是从物体初位置指向末位置的一段有向线段. 区别:路程是标量,只有大小没有方向;位移是标量,既有大小又有方向. 路程与运动的轨迹有关,而位移只于初末位置有关. 相加的原则不一样 路程大于等于位移的大小,只有当物体做单向直线运动时,位移的大小才等于路程. 矢量和标量: 矢量.既有大小又有方向的量,例如力,速度,加速度等. 标量,只有大小没有方向的量. 速度: 定义;位移与发生这段位移所用时间的比值. 意义:表示物体运动的快慢. 公式:v=x/t 单位:3.6km/h=1m/s,即km/h与m/s之间时3.6倍的关系. 矢量性:大小用:v=x/t来计算,方向为物体运动的方向. 分类:平均速度和瞬时速度..平均速度对应的是一段时间或者一段位移,而瞬时速度对应的是时刻或者一个点. 注意:速度的大小又称为速率,于是又有两组概念. 平均速度=位移(x)/时间(t) 平均速率=路程(s)/时间(t) 加速度:定义,速度的变化量与发生这一变化所用时间的比值. 公式:a=△v/△t注意:加速度是速度变化的快慢,或者说是速度的变化率. 符号:物理用a来表示加速度. 单位:m/s2,读作”米每二次方秒” 矢量性:加速度是矢量.,大小可以由a=△v/△t,方向与速度变化量的方向一致(△v的方向) 注意:当a的方向与v的方向一致时,物体作加速运动;当a的方向与v的方向相反时,物体作减速运动. 匀速运动:速度保持不变的运动(包括速度的大小和方向). 瞬时速度保持不变的运动. 匀变速直线运动:沿着一条直线运动,加速度保持不变的运动.(或者说,匀变速直线运动是加速度保持不变的运动). 第二,实验的处理. 第三, 计算的处理 公式:速度公式v=v0+at 位移时间公式x=v0t+at2/2 位移速度公式v2-v02=2ax 多练习受力分析的题目,比较常用的分析方法有假设,即假设力不存在,再分析运动情况,多用于分析力的存在与否 正交分解,可以把所有里分解在一个坐标系里,可以直观判断受力及运动情况 整体法,把没有相对运动趋势的的物体看作整体,以简化受力分析 牛顿三定律一定要记住 特别是牛二F=ma 它是把运动和力练习在一起的公式。 必修二主要是曲线运动,和受力分析有关的, 不过目前我才看一点, 总的来说,必修一必修二是矢量运算,大同小异。只要熟练掌握力学知识与矢量运算(及向量运算)就可以以不变应万变。

7,必修2物理知识点

高一物理必修2 复习提纲 二、曲线运动 1、深刻理解曲线运动的条件和特点 (1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。 (2)曲线运动的特点:○1在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。②曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。○3做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。 2、深刻理解运动的合成与分解 物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。 运动的合成与分解基本关系:○1分运动的独立性;○2运动的等效性(合运动和分运动是等效替代关系,不能并存);○3运动的等时性;○4运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。) 3.深刻理解平抛物体的运动的规律 (1).物体做平抛运动的条件:只受重力作用,初速度不为零且沿水平方向。物体受恒力作用,且初速度与恒力垂直,物体做类平抛运动。 (2).平抛运动的处理方法 通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。 (3).平抛运动的规律 以抛出点为坐标原点,水平初速度V0方向为沿x轴正方向,竖直向下的方向为y轴正方向,建立如图所示的坐标系,在该坐标系下,对任一时刻t. ①位移 分位移 , ,合位移 , . 为合位移与x轴夹角. ②速度 分速度 , Vy=gt, 合速度 , . 为合速度V与x轴夹角 (4).平抛运动的性质 做平抛运动的物体仅受重力的作用,故平抛运动是匀变速曲线运动。 三、圆周运动 1.匀速圆周运动 1. 定义:相等的时间内通过的圆弧长度都相等的圆周运动。 2. 描述圆周运动的几个物理量: (1) 线速度V:大小为通过的弧长跟所用时间的比值,方向为圆弧该点的切线方向:v=s/t; (2) 角速度:大小为半径转过的角度跟所用时间的比值,有方向(暂不研究)。 ω=φ/t (3) 周期T:沿圆周运动一周所用的时间;频率f=1/T (4) 转速n:每秒钟完成圆周运动的圈数。 3. 线速度、角速度、周期、频率之间的关系: f=1/T, ω=2π/T=2πf, v=2πr/T =2πrf =ωr 4.注意:ω、T、f三个量中任一个确定,其余两个也就确定,但v还和r有关;固定在同一根转轴上转动的物体其角速度相等;用皮带传动的皮带轮轮缘(皮带触点)线速度大小相等。 2.向心力和向心加速度 1. 做匀速圆周运动的物体所受的合外力总是指向圆心,作用效果只是使物体速度方向发生变化。 2. 向心力:使物体速度方向发生变化的合外力。它是个变力;向心力是根据力的作用效果命名的,不是性质力。 3. 向心力的大小跟物体质量、圆周半径和运动的角速度有关 F=mω2r=mv2/r 4. 向心加速度:向心力产生的加速度,只是描述线速度方向变化的快慢。 公式:a=F/m=ω2r=v2/r=(2πf)2r 方向:总是指向圆心,时刻在变化,是一个变加速度。 5.圆周运动中向心力的特点: ① 匀速圆周运动:由于匀速圆周运动仅是速度方向变化而速度大小不变,故只存在向心加速度,物体受到外力的合力就是向心力。可见,合外力大小不变,方向始终与速度方向垂直且指向圆心,是物体做匀速圆周运动的条件。 ② 变速圆周运动:速度大小发生变化,向心加速度和向心力都会相应变化,求物体在某一点受到的向心力时,应使用该点的瞬时速度,在变速圆周运动中,合外力不仅大小随时间改变,其方向也不沿半径指向圆心,合外力沿半径方向的分力提供向心力,使物体产生向心加速度,改变速度的方向,合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小。 3.匀速圆周运动的实例分析 1. 向心力可以是几个力的合力,也可是某个力的分力,是个效果力。 2. 火车转弯问题:外轨略高于内轨,使得火车所受重力和支持力的合力F合提供向心力:F合=mg tgθ=mv2/R 如果火车不按照规定速度转弯,会对铁轨造成一定损害。 3. 汽车过拱桥问题:汽车以速度v过圆弧半径为R的桥面最高点时,汽车对桥的压力等于G-mv2/R,小于汽车的重量;通过凹形桥最低点时对桥的压力等于G + mv2/R,大于汽车的重量。 4.圆周运动中的临界问题: 关于临界问题总是出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况: ① 如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况: <1> 临界条件:小球达到最高点时绳子的拉力;(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即 ,上式中的 是小球通过最高点的最小速度,通常叫临界速度 。 <2> 能过最高点的条件: (此时绳、轨道对球分别产生拉力、压力)。 <3> 不能过最高点的条件: (实际上球还没有到最高点就脱离了轨道)。 ② 如图所示,有物体支撑的小球在竖直平面内做圆周运动过最高点的情况: <1> 临界条件:由于硬杆和管壁的支撑作用,小球恰能达最高点的临界速度 。 <2> 如图所示的小球过最高点时,轻杆对小球的弹性情况: 当 时,轻杆对小球有竖直向上的支持力 ,其大小等于小球的重力,即 。 当 时,杆对小球的作用力的方向竖直向上,大小随速度的增大而减小,其取值范围是: 。 当 时, 。 当 时,杆对小球有指向圆心的拉力,其大小随速度的增大而增大。 <3> 如图所示的小球过最高点时,光滑硬管对小球的弹力情况,同上面图(1)的分析。 4.离心现象及其应用 1. 离心运动:做匀速圆周运动的物体,在所受合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。物体做离心运动的原因是惯性,而不是受离心力。 2. 离心运动的应用:离心干燥器、离心分离器、洗衣脱水筒、棉花糖的制作等。 3. 汽车在转弯处不能超过规定的速度,砂轮等不能超过允许的最大转速。 四、万有引力与航天 1.开普勒行星运动定律 (1).所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上. (2).对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积. (3).所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等. a3/T2=K 2.万有引力定律及其应用 自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体质量的乘积成正比,跟它们距离的二次方成反比。 表达式: F=Gm1m2/r2 地球表面附近,重力近似等于万有引力mg=Gm1m2/R2 3.第一宇宙速度 第二宇宙速度 第三宇宙速度 人造地球卫星:卫星环绕速度v、角速度 、周期T与半径 的关系: 由 ,可得: ,r越大, 越小; ,r越大, 越小; ,r越大,T越大。 第一宇宙速度(环绕速度): ; 第二宇宙速度(脱离速度): ; 第三宇宙速度(逃逸速度): 。 会求第一宇宙速度: 卫星贴近地球表面飞行 地球表面近似有 则有 4、经典力学的局限性 牛顿运动定律只适用于解决宏观、低速问题,不适用于高速运动问题,不适用于微观世界。 公式和图片太繁琐了,凑和着看吧。

文章TAG:高一  物理  必修  高中  高一物理必修二  
下一篇