本文目录一览

1,生物学中系统的概念是什么

能够完成一种或几种生理功能而组成的多个器官的总和,叫做系统。

生物学中系统的概念是什么

2,生物网络和系统生物学的关系

系统生物学为研究生物网络提供了思路、方法和工具
生物科学是在生物学的基础上衍生并发展出来的,

生物网络和系统生物学的关系

3,什么是系统生物学

系统生物学是研究生物系统组成成分的构成与相互关系的结构、动态与发生,以系统论和实验、计算方法整合研究为特征的生物学。
自然界中所有具有生命的物体叫做生物。一般来说,生物可以分为植物、动物和微生物三大类。 生态系统就是以上三类组成的系统

什么是系统生物学

4,何谓系统生物学其主要技术平台是什么

研究生物系统组成成分的构成与相互关系的结构、动态与发生,以系统论和实验、计算方法整合研究为特征的生物学。20世纪中页贝塔朗菲定义“机体生物学”的“机体”为“整体”或“系统”概念,并阐述以开放系统论研究生物学的理论、数学模型与应用计算机方法等。系统生物学不同于以往仅仅关心个别的基因和蛋白质的分子生物学,在于研究细胞信号传导和基因调控网路、生物系统组成之间相互关系的结构和系统功能的涌现。
支持一下感觉挺不错的

5,系统生物学的灵魂

——整合作为后基因组时代的新秀,系统生物学与基因组学、蛋白质组学等各种“组学”的不同之处在于,它是一种整合型大科学。首先,它要把系统内不同性质的构成要素 (基因、mRNA、蛋白质、生物小分子等) 整合在一起进行研究。系统生物学研究所的第一篇研究论文,就是整合酵母的基因组分析和蛋白质组分析,研究酵母的代谢网络[2]。由于不同生物分子的研究难度不一样,技术发展程度不一样,对它们的研究水平有较大的差距。例如,基因组和基因表达方面的研究已经比较完善,而蛋白质研究就较为困难,至于涉及生物小分子的代谢组分的研究就更不成熟。因此,要真正实现这种整合还有很长的路要走。对于多细胞生物而言,系统生物学要实现从基因到细胞、到组织、到个体的各个层次的整合。《科学》周刊系统生物学专集中一篇题为“心脏的模型化——从基因到细胞、到整个器官”的论文,很好地体现了这种整合性[3]。我们知道,系统科学的核心思想是:“整体大于部分之和”;系统特性是不同组成部分、不同层次间相互作用而“涌现”的新性质;对组成部分或低层次的分析并不能真正地预测高层次的行为。如何通过研究和整合去发现和理解涌现的系统性质,是系统生物学面临的一个带根本性的挑战。系统生物学整合性的第三层含义是指研究思路和方法的整合。经典的分子生物学研究是一种垂直型的研究,即采用多种手段研究个别的基因和蛋白质。首先是在DNA水平上寻找特定的基因,然后通过基因突变、基因剔除等手段研究基因的功能;在基因研究的基础上,研究蛋白质的空间结构,蛋白质的修饰以及蛋白质间的相互作用等等。基因组学、蛋白质组学和其他各种“组学”则是水平型研究,即以单一的手段同时研究成千上万个基因或蛋白质。而系统生物学的特点,则是要把水平型研究和垂直型研究整合起来,成为一种“三维”的研究。此外,系统生物学还是典型的多学科交叉研究,它需要生命科学、信息科学、数学、计算机科学等各种学科的共同参与。系统生物学的整合性可以体现在两种不同的策略上。第一种就是切奇(Church) 和后来胡德(Hood)的系统生物学研究所采用的方式,选定一个较为简单的系统,如单细胞生物酵母,然后分析尽可能多的构成成分——基因组、转录组、蛋白质组、相互作用组,以揭示整个系统的行为。另外一种策略是吉尔曼 (A. G. Gilman) 领导的“信号转导联军”采用的,以一个较为复杂的系统 (G 蛋白介导的和与其相关的细胞信号转导系统) 为研究对象,采用尽可能多的研究手段去进行分析 (详细介绍见本刊 2002 年第 02 期第 36 页)。

6,什么叫系统初一生物

就是所谓的进化系统!从最原始进化到高级!
系统是指彼此间相互作用,相互依赖的组分有规律地结合而形成的整体。 高一生物会讲到的
 前生物系统   最简单的原始生命与最复杂的化学分子之间的差异仍然是极大的,主要是“组织化”水平的差异。为了填补化学演化与生物学演化之间的鸿沟,人们提出了许多介于化学分子结构与原始生命之间的过渡形式,并给予许多不同的名称。例如原生体protobions)、原细胞(protocells)、前生物学系统(prebiological systems)、前生物学生命(prebiological life)等等。究竟是怎样过渡的现在仍不甚了解,但大体上应包含三个过程:   (1) 生物大分子自我复制系统的建立;   (2) 遗传密码的起源;   (3) 分隔的形成。   人们通过研究,建立了几种由化学系统到生物学系统的过渡模式,如奥巴林的团聚体模式。
细胞,组织,器官,系统,个体,种群和群落,生态系统,生物圈 你要的是这个吗?
由能够共同完成一种或几种生理功能的多个器官按照一定的次序组合在一起形成
根据胡德的定义,系统生物学是研究一个生物系统中所有组成成分(基因、mRNA、蛋白质等)的构成,以及在特定条件下这些组分间的相互关系的学科。也就是说,系统生物学不同于以往的实验生物学——仅关心个别的基因和蛋白质,它要研究所有的基因、所有的蛋白质、组分间的所有相互关系。显然,系统生物学是以整体性研究为特征的一种大科学。 系统理论和系统思想对于我国知识分子并不陌生。1980年代在我国学术界曾经流行过“三论”——系统论、信息论和控制论,其中的“系统论”是指奥地利科学家贝塔朗菲(L. Bertalanffy)在1970年代创立的“一般系统论”(general system theory)。尽管贝塔朗菲是以生物学家的身份去思考、研究并提出系统论的,但他的系统论并不仅仅适用于生命科学,而且适用于物理学、心理学、经济学和社会科学等各门学科。如果说过去所谈论的是指在哲学层面上的、普适性强的一般系统论,那么本文所要介绍的系统生物学(systems biology),则是生命科学研究领域的一门新兴学科。 作为人类基因组计划的发起人之一,美国科学家莱诺伊·胡德(Leroy Hood)也是系统生物学的创始人之一。在胡德看来,系统生物学和人类基因组计划有着密切的关系。正是在基因组学、蛋白质组学等新型大科学发展的基础上,孕育了系统生物学。反之,系统生物学的诞生进一步提升了后基因组时代的生命科学研究能力。正如胡德所说,“系统生物学将是21世纪医学和生物学的核心驱动力”。基于这一信念,胡德在1999年年底辞去了美国西雅图市华盛顿大学的教职,与另外两名志同道合的科学家一起创立了世界上第一个系统生物学研究所(Institute for Systems Biology)。随后,系统生物学便逐渐得到了生物学家的认同,也唤起了一大批生物学研究领域以外的专家的关注。2002年3月,美国《科学》周刊登载了系统生物学专集。该专集导论中的第一句话这样写道:“如果对当前流行的、时髦的关键词进行一番分析,那么人们会发现,系统高居在排行榜上。” 系统生物学的基本工作流程有这样四个阶段。首先是对选定的某一生物系统的所有组分进行了解和确定,描绘出该系统的结构,包括基因相互作用网络和代谢途径,以及细胞内和细胞间的作用机理,以此构造出一个初步的系统模型。第二步是系统地改变被研究对象的内部组成成分(如基因突变)或外部生长条件,然后观测在这些情况下系统组分或结构所发生的相应变化,包括基因表达、蛋白质表达和相互作用、代谢途径等的变化,并把得到的有关信息进行整合。第三步是把通过实验得到的数据与根据模型预测的情况进行比较,并对初始模型进行修订。第四阶段是根据修正后的模型的预测或假设,设定和实施新的改变系统状态的实验,重复第二步和第三步,不断地通过实验数据对模型进行修订和精练。系统生物学的目标就是要得到一个理想的模型,使其理论预测能够反映出生物系统的真实性.

7,论述系统生物学的发展与应用技术体系

系统生物学的发展:实验方法与系统方法构成科学研究的基该方法,19世纪是实验生物学(生态、生理、遗传与医学等)范式建立,20世纪是实验生物学迅速发展和系统生物学(生态、生理、遗传与医学等)范式形成。系统科学(包括控制论、信息论)根源于生命科学,发展了计算机科学而又应用于生物科学,将开发出生物计算机。维纳与香农从动物与通讯行为的研究中提出控制论与信息论,整个系统科学根植于有机体哲学思维。系统生物学,最初开创于贝塔郎菲的一般系统理论与理论生物学,艾根的超循环理论发展了细胞、生物化学与分子层次的系统论。20世纪70年代国际召开了“系统论与生物学” (systems theory and biology) 会议,80年代召开了生物化学系统论、生物系统的计算机模型等探讨的国际会议 (第11届国际分子系统生物学会议2009 年6 月于中科院上海召开)。系统生物学的概念在20世纪中叶已经提出,合成生物学的概念提出于基因重组技术的产生,进化理论、有机分子合成可以说是最早的探索。系统生物学的发展经历了三个历史时期:第一期,生态系统,系统生态学与行为、心理学,开始于 20 世纪60~70 年代;第二期,生理系统,系统生理学与神经、内分泌、免疫学,开始于20世纪70~80年代;第三期,遗传系统,系统遗传学与胚胎、发育生物学,系统遗传学的概念与词汇于20 世纪90 年代中科院曾邦哲(曾杰)发表,并于1996年主办第1 届国际转基因动物学术研讨会(秘书长)阐述了系统论与生物工程、输卵管生物反应器及基因组进化与生物体发育自组织系统理论,遗传学从染色体行为的细胞遗传学、基因表达信息流的分子遗传学,发展到了系统遗传学的细胞发生信号传导与基因调控网络研究,并重新于第19届国际遗传学大会阐述(包括指出C. Nuslein-Volhard、S. Brenner等是较早以systematic方法研究遗传学的科学家)。2008 年3 月美国加州举办了整合与系统遗传学会议,2009 年10月荷兰召开了系统遗传学研讨会。1999 年初于德国建立系统生物科学与工程网及筹备联合协会、国际会议等 (1999 年10 月Nature 和12 月Kybernetes),曾邦哲(ZengBJ)定义生物系统理论与实验、计算(computational)、工程方法的生物系统分析与人工生物系统研究,并阐述其自组织系统结构理论基础,1999-2000年将筹备通知发送到系统科学、计算机科学、纳米科学、生物医学、生物工程等广泛领域的国际科学家(包括邀请C. Nuslein-Volhard、Tomita等著名科学家),细胞是由大规模生物分子(纳米)构成的复杂生物系统,基因组是可以重编程序的智能系统,生命系统人工设计与改造,可以开发出细胞生物机器。2000 年同期,日本Kitnano 和Tomita 举办国际系统生物学会议,美国Hood 建立系统生物学研究所,美国 Kool 重新提出合成生物学的概念。2001年WolkenhauerO.6月(9月出版)、Ideker T & Hood L9月和Kitano H.10月(MIT出版2000年会议论文集)等发表文章论述系统生物学的系统论、组学和计算方法等,2002年日本北野宏明(Kitano H.) 、2003年美国胡德(Hood L.)[8] 也论述了系统生物学是实验与计算方法整合的生物系统研究,2008年Nature文章[9] 则论述了系统生物学与合成生物学的结构理论。2005年Ideker赞同是如同Kitnano的分子水平的系统生物学概念,2007年Kinano阐释系统生物学是在分子生物学层次的重新提出。计算生物技术、组学 (omics) 生物技术与合成生物技术,构成系统生物学发展的技术基础 - 系统生物技术(systems biotechnology),现代系统生物学是生物系统的理论与技术整合的研究体系。21 世纪伊始,权威刊物 Nature、Science 发表系统生物学、合成生物学等专刊,终于进入了系统生物科学(简称系统生物学)全球化迅速发展时代。
嗜酸性粒细胞发挥adcc作用是通过其fcεrⅱ和fcαr介导的,嗜酸性粒细胞可脱颗粒释放碱性蛋白等,在杀伤寄生虫如蠕虫中发挥重要作用。 抗体依赖的细胞介导的细胞毒作用(adcc)。 此外,人iggfc段能非特异地与葡萄菌a蛋白(staphylococcus proteina,spa)结合,应用spa可纯化igg等抗体,或代替第二抗体用。

文章TAG:系统  系统生物学  生物  生物学  系统生物学  
下一篇