本文目录一览

1,和差化积公式推导是怎么样的

和差化积公式推导:可以用积化和差公式推导,也可以由和角公式得到,以下用和角公式证明之。由和角公式有:两式相加、减便可得到上面的公式,同理可证明公式。积化和差口诀:积化和差得和差,余弦在后要相加;异名函数取正弦,正弦相乘取负号。积化和差最后的结果是和或者差;若两项相乘,后者为cos项,则积化和差的结果为两项相加。若不是,则结果为两项相减;若两项相乘,一项为sin,另一项为cos,则积化和差的结果中都是sin项;若两项相乘,两项均为sin,则积化和差的结果前面取负号。

和差化积公式推导是怎么样的

2,和差化积公式是如何推导的

推导过程:可以用积化和差公式推导,也可以由和角公式得到,以下用和角公式证明之。由和角公式有:两式相加、减便可得到上面的公式,同理可证明公式。对于(5)、(6),有:证毕。扩展资料记忆方法1、只记两个公式甚至一个可以只记上面四个公式的第一个和第三个。第二个公式中的 ,即 ,这就可以用第一个公式。同理,第四个公式中, ,这就可以用第三个公式解决。如果对诱导公式足够熟悉,可以在运算时把余弦全部转化为正弦,那样就只记住第一个公式就行了。用的时候想得起一两个就行了。2、结果乘以2这一点最简单的记忆方法是通过三角函数的值域判断。正弦和余弦的值域都是[-1,1],其积的值域也应该是[-1,1],而和差的值域却是[-2,2] ,因此乘以2是必须的。也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:故最后需要乘以2。参考资料:百度百科-和差化积公式

和差化积公式是如何推导的

3,三角函数的和差化积公式推导过程

和差化积公式推导过程:已知sin(A+B)=sinAcosB+cosAsinB,sin(A-B)=sinAcosB-cosAsinB,两式相加可得sin(A+B)+sin(A-B)=2sinAcosB。所以,sinAcosB=(sin(A+B)+sin(A-B))/2。同理,两式相减可得cosAsinB=(sin(A+B)-sin(A-B))/2。同样的,已知cos(A+B)=cosAcosB-sinAsinB,cos(A-B)=cosAcosB+sinAsinB,两式相加可得cos(A+B)+cos(A-B)=2cosAcosB,所以,cosAcosB=(cos(A+B)+cos(A-B))/2。同理,两式相减可得sinAsinB=-(cos(A+B)-cos(A-B))/2。这样,就得到了积化和差的四个公式。有了积化和差的四个公式以后,只需一个变形,就可以得到和差化积的四个公式,将上述四个公式中的A+B设为x,A-B设为y,那么A=(x+y)/2,B=(x-y)/2。把A,B分别用x,y表示就可以得到和差化积的四个公式:1、sinx+siny=2sin((x+y)/2)cos((x-y)/2);2、sinx-siny=2cos((x+y)/2)sin((x-y)/2);3、cosx+cosy=2cos((x+y)/2)cos((x-y)/2);4、cosx-cosy=-2sin((x+y)/2)sin((x-y)/2)。

三角函数的和差化积公式推导过程


文章TAG:和差化积  公式  公式推导  过程  和差化积公式推导过程  
下一篇