1,自然数包括0么

包括
自然数就是正整数和零 小小的BS一下楼上的那位。。小学数学及格没哦 别误人子弟.....
0也是自然数 所以包括
当然包括,请采纳
不包括 整数才包括

自然数包括0么

2,自然数包括零吗

包括啊
现在 0 是自然数了。。 以前小学课本里0不是自然数。。。现在都已经改了0属于自然数。。
包括
是的,包括
零是最小的自然数。
自然数是0和正整数

自然数包括零吗

3,自然数包括0吗

自然数包括0以及所有的正整数,不包括负数。自然数是指用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4……所表示的数。自然数由0开始,一个接一个,组成一个无穷的集体,即指非负整数。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论:自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。自然数是一切等价有限集合共同特征的标记。整数包括自然数,所以自然数一定是整数,且一定是非负整数。但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不总是成立的。用以计量事物的件数或表示事物次序的数 。 即用数码0,1,2,3,4,……所表示的数。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。

自然数包括0吗

4,数学中自然数包括0吗

1993年颁布的《中华人民共和国国家标准》(GB 3100-3102-93)《量和单位》(11-2.9)第311页,规定自然数包括0。希望我的回答对您有帮助,有问题可以追问。满意请及时采纳,谢谢!
包括吧!其实关于这个问题一直都有分歧
不包括
当然包括0是最小自然数,没有最大自然数但是,在小学阶段的“整除”部分,仍然不考虑自然数0,因而在约数、倍数等概念中都不包括0。另外,一般情况下我们不说数0是几位数,所以最小的一位数是1。
从历史上看,国内外数学界对于0是不是自然数历来有两种观点:一种认为0是自然数,另一种认为0不是自然数。建国以来,我国的中小学教材一直规定自然数不包括0。不过后来又修改,0为自然数.
自然数 自然数(natural number) 简单说就是大于等于零的整数。

5,现在自然数包括0吗

0是自然数 随着九年义务教育小学数学教材(试用修订版)的陆续使用,我们陆续接到一些小学数学教师、家长和学生的来信、来电,询问0是否是自然数的问题。现予以解答如下: 从历史上看,国内外数学界对于0是不是自然数历来有两种观点:一种认为0是自然数,另一种认为0不是自然数。建国以来,我国的中小学教材一直规定自然数不包括0。 目前,国外的数学界大部分都规定0是自然数。为了国际交流的方便,1993年颁布的《中华人民共和国国家标准》(GB 3100~3102-93)《量和单位》(11-2.9)第311页,规定自然数包括0。所以在近几年进行的中小学数学教材修订中,我们的教材研究编写人员根据上述国家标准进行了修改。即一个物体也没有,用0表示。0也是自然数。 但是,在小学阶段的“整除”部分,仍然不考虑自然数0,因而在约数、倍数等概念中都不包括0。另外,一般情况下我们不说数0是几位数,所以最小的一位数是1。
现在最新的数学界认证,0属于自然数
包括
不包括
最近几年有把0作为自然数的倾向,但在不同的学科中,为了研究方便,还是不能统一起来。 当然它算不算自然数都是人为的规定 只要研究方便,当作或不当作自然数都是有道理的。请参考我另外的回答。

6,自然数中包括0吗

数学界以及科学界已经认定0是自然数。 在表示“无”的时候需要引入新的数字,因此0被认定为自然数。
0是自然数
自然数 自然数(natural number) 简单说就是大于等于零的整数。 用以计量事物的件数或表示事物次序的数 。 即用数码1,2,3,4,……所表示的数 。自然数由1开始 , 一个接一个,组成一个无穷集合。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论枣自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。 序数理论是意大利数学家G.皮亚诺提出来的。他总结了自然数的性质,用公理法给出自然数的如下定义。 自然数集N是指满足以下条件的集合:①N中有一个元素,记作1。②N中每一个元素都能在 N 中找到一个元素作为它的后继者。③ 1不是任何元素的后继者。④ 不同元素有不同的后继者。⑤(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。 基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基 数 。这样 ,所有单元素集{x},{y},{a},{b}等具有同一基数 , 记作1 。类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等 。自然数的加法 、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。 “0”是否包括在自然数之内存在争议,有人认为自然数为正整数,即从1开始算起;而也有人认为自然数为非负整数,即从0开始算起。目前关于这个问题尚无一致意见。不过,在数论中,多采用前者;在集合论中,则多采用后者。目前,我国中小学教材教材将0归为自然数
自然数中不包括 零

7,自然数包括0吗

1994年11月国家技术监督局发布的《中华人民共和国国家标准,物理科学和技术中使用的数学符号》中,将自然数集记为 N=而将原自然数集称为非零自然数集 N+(或N*)=自然数集扩充后,文[1]中的自然数的基数理论以及其他一些与自然数有关的理论问题随之起变化,这给数学教学与数学应用产生一定影响.为此,我们将自然数的基数理论讨论如下. 1 对自然数的来源的认识 由于自然数的概念是建立在基数理论[1]之上的,基数是由集合对等而来.最初人类对物品的计数,是将物品与人的手指(脚趾)数形成映射关系,物品既然存在“多少”,也就存在“有”或“没有”,“没有”即可认为是空集,其计数应当是零.这就是说,零与非零自然数是人类认识同步的客观现象,而并非是6世纪才有零的概念.也许这就是将零补充到自然数集的缘由之一.事实上,国外许多文献和专家早就主张将零作为第一个自然数. 2 自然数的新概念 自然数扩充后,包含了空集的基数,要去掉原有自然数定义中“非空”的限制条件,即定义1 有限集合的基数叫做自然数.根据对等的概念,可以建立N与N+的一一映射关系f: N↓=由此可见,N与N+有相同的基数,即|N|=|N+|. 3 自然数的四则运算 自然数加法、乘法运算义定只要去掉原有定义中的“非空”二字即可,亦即 定义2 设有有限集合A和B,且A∩B=Φ(A,B分离).若记A∪B=C,集合A,B,C的基数分别是a,b和c,那么c叫做a与b的和,记作 a+b=c. a和b叫做加数.求两个数的和的运算叫做加法. 定义3 设有m(m>1)个相互对等,且两两分离的有限集合A1,A2,A3,…,Am,它们的基数都是n.又设A=Umi=1Ai,A的基数记作 a,即有a=n+n+…+nm个,这个a就叫做n乘以m的积,记作a=n×m,或a=n.m,或a=nm.n称为被乘数,m称为乘数.求两个数积的运算叫做乘法. 对于数0,1,补充义定:n和0的积是0,n和1的积是n,即n.0=0,n.1=1. 在上述定义里,加法、乘法的交换律、结合律,乘法对于加法的分配律仍然成立. 关于减法运算的定义,除了去掉“非空”二字外,集合B可以是A本身,即 定义4 设有有限集合A和B,B A,若记A-B=C,且A,B,C的基数分别记作a,b,c,那么c叫做a,b的差,记作 a-b=c. a叫做被减数,b叫做减数.求两个数差的运算叫做减法. 除法是乘法的逆运算,在原定义中要限定“除数非零”即可. 定义5 设a,b(b≠0)是两个自然数,如果存在一个自然数c,使得bc=a,那么c叫做a除以b所得的商,记作 ab=c,或a÷b=c. a称为被除数,b称为除数.求两个数商的运算叫做除法. 4 自然数的有关性质 (1)自然数的有序性决定了自然数可以比较大小,即 定义6 如果两个有限集合A,B的基数分别为a,b,那么 1° 当A A′,A′~B时,a>b; 2° 当B′ B,A~B′时,a<b; 3° 当A~B时,a=b. 自然数有反身律:a=a;对称律:若a=b,则b=a;传递律:若a≥b,b≥c,则a≥c. 自然数从小到大的排序为 0,1,2,3,…. (2)自然数的单调性反映了不等量关系中的运算性质,扩充后的自然数其单调性有了局部性改变,即 若a≥b,则 1° a+c≥b+c; 2° 当c>0时,ac≥bc, 当c=0时,ac=bc. 对于与自然数有关的数学论证与原理,应随自然数扩充后作相应调整.如数学归纳法证明的步骤应是 1° 验证n=0时,命题成立; 2° 假设n=k-1时成立,则n=k时命题成立.如果您满意我的回答,请及时点击【采纳为满意回答】按钮!!!手机提问的朋友在客户端右上角评价点【满意】即可!!!你的采纳是我前进的动力!!!谢谢!!!
包括的
零是自然数
包括
肯定包括啊

文章TAG:自然  自然数  包括  自然数包括0  
下一篇