本文目录一览

1,什么是正比例

两个相关的量,一个变化,另一个也随之变化,且它们的的比值一定,这两个量就成正比例关系,用字母表示就是,y=kx..

什么是正比例

2,正比例是什么

正比例是指两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例是一种函数关系,y=kx。是一次函数 y=kx+b 的特殊形式,相等关系y=x是正比例的特殊形式。

正比例是什么

3,在数学中正比例和反比例是什么意思

y=kx。 k常数。就是正比xy=k。就是反比
一个数随着另一个数的减小或增大而成比例地减小或增大为正比例;相反,一个数随着另一个数的减小或增大而成比例地增大或减小为反比例。
正比例指两个事物随着一方增长另一方也增长。反比例就是一方增长另一方反而减小

在数学中正比例和反比例是什么意思

4,甚么叫做正比例

两种相关联的变量,一种量变化,另一种量也随着变化,如果这两种量的比值一定那么这两个数就成正比例,这两个变量之间的关系就叫做成正比例。
听我讲来:先明白甚么叫“正比”,这样两个量:其中1个扩大(或缩小)多少倍,另外一个随着扩大(或缩小)一样倍。这两个量就是成正比。例如,在时间1定时,速度与路程就是成正比。再说“正比例”。两个正比若成等式就是正比例。如2支笔8元,7支多少钱?就有等式:2:7=8:X(这就是正比例),解这比例:X=7*8/2=28(元)希望采用哦
两种相关联的变量,一种量变化,另一种量也随着变化,如果这两种量的比值一定那么这两个数就成正比例,这两个变量之间的关系就叫做成正比例。 望采纳

5,正比例什么意思

正比例的概念  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系.[1]编辑本段正比例的意义  满足关系式y/x=k(k为常量)的两个变量,我们称这两个变量的关系成正比例。显然,若y与x成正比例,则y/x=k(k为常量);反之亦然。 例如:在行程问题中,若速度一定时,则路程与时间成正比例;在工程问题中,若工作效率一定时,则工作总量与工作时间成正比例。正比例还可以构成正比例函数 ,写成y=ax
正比两个变量的比值为常数时的比例关系 正比例 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. 用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示: x/y(x:y)=k(一定),x和y表示两种相关联的量,k表示它们的比值.两个相关联的量同时变化,方向相同,倍数相同。如果把比例中不变的值称为k,前后项为x、y,则k=x/y,k为两数比值。 正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系

6,反比例和正比例是什么

两个变量的比值是一个常数,称为正比例,此情形下两者同时变大,或同时缩小;两个变量的积是一个常数,称为反比例,此情形下,一个变大,另外一个必然变小。
两个变量的比值是一个常数,称为正比例,此情形下两者同时变大,或同时缩小;两个变量的积是一个常数,称为反比例,此情形下,一个变大,另外一个必然变小。
正比例 两种相关联的量,一种量随着另一种量的变化而变化 相对应的两个量的比值(商)一定 (一 定) 反比例 两种相关联的量,一 种量随着另一种量的变化而变化。 相对应的两个量的积一定 xy=k (一定) 比是表示两个数相除的关系。 比例是表示两个比相等的关系。 它们的意义不同,形式也不同。比由两项组成(前项、后项),比例由四项组成(两个内项两个外项)。 意 义 形 式 组 成 比 比是表示两个数相除的关系 比由两项组成(前项、后项) 任意两个数都能组成比 比例 比例是表示两个比相等 的关系 比例由四项组成(两个内 项、两个外项) 任意四个数不一定都能组成比例 比是表示两个数相除的关系。 比例是表示两个比相等的关系。、判断两个量是否成正或反比例 1.量与数的区别量是变化的,而数是固定的;量可以取到不同的数。小学阶段由于学生大量接触的是固定的数,少数学生易将两者混淆。祝你学习进步
给你举个例子吧 当y=kx k为一个定值 y随x的增大而增大减小而减小,而且变化总是与定值k有比例关系(y/x=k恒成立) 就像你题上说的 定报纸的人和总钱数 总钱数/定报纸的人=每份报纸的钱数恒成立 这样的关系就是正比例关系 当y=k/x时 y随x的增大而减小减小而增大 但xy=k 恒成立 就想你题上说的 长方形砖面积和铺房间所需的砖数 长方形砖面积*铺房间所需的砖数=该房间面积 这样的关系就是反比例关系 小老鼠团队欢迎您的加入. 希望我的回答能帮你解决问题。

7,什么叫正比例什么叫反比例

正比例的意义 ☆知识要点: (1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. ①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示: ②正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例? 以上各种商都是一定的,那么被除数和除数. 所表示的两种相关联的量,成正比例关系. 注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例. 例如:一个人的年龄和它的体重,就不能成正比关系,正方形的边长和它的面积也不成正比例关系. 反比例:两种相关联的量一种量变化,另种量也随着变化,如果这两种量中,相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做成反比例关系. 用字母表示:两种相关联的量,分别“x”和“y”表示,“k”表示不变的量,那么反比例关系式是: xy=k(一定) ②反比例关系的两种相关联的量的变化规律是一种量扩大,另一种量缩小,一种量缩而另一种量则扩大,积不变. 例:图上距离一定,实际距离和比例尺是否成反比例. 因为实际距离×比例尺=图上距离(一定) 所以,实际距离和比例尺成反比例. 3.正比例和反比例 相同点:两种量都是相关联的量,一种量变化,另一种量也随着变化. 不同点:两种量成正比例,是一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,它们扩大,缩小的规律是,这两种量相对应的两个数的比值不变,即商一定. 两种量成反比例是一种量扩大,另一种量反而缩小一种量缩小,另一种量反而扩大,它们变化的规律是这两种量中,相对应的两个数积不变(一定). ☆基础练习: 1. 填空 ①两种( )的量,一种量变化,另一种量( ).如果这两种量中( )的两上数的( )一定,这两种量就叫做成反比例的量,它们的关系叫做( ). 判断下面两种量成什么比例,并说明理由. ①时间一定,每小时织布的米数和织布总米数. ②平行四边形面积一定,它的底和高. ③分子一定,分母和分数值. ④报纸的单价一定,总价与订阅的份数. ⑤正方形的周长和边长. ⑥正方形的边长和面积. ⑦路程一定,车轮的直径与车轮的转数. ⑧被成数一定,成数与差. ⑨三角形的高一定,底和面积. ⑩甲、乙两数互为倒数,甲数和乙数 ☆数学医院: ①铺地的总面积一定,每块砖的面积与需要的块数成正比例. ②班级学生的总人数一定,出勤率与缺勤率成正比例. ③小刚跳高的高度和他的身体成正比例. ④长方形周长一定,它的长和宽成反比例. ⑤圆的半径和它的面积成正比例 反比例 反比例关系是通过应用题的总数与份数关系帮助学生认识的。在总数与份数关系中,包含总数、份数和每份数。当总数一定时,每份数和份数是两种相关联的变量。如果每份数变化,份数也随着变化。同样如果份数变化,每份数也随着变化。它们的变化,无论扩大还是缩小,相对应的两个量的乘积(也就是总数)一定。具体说,当总数一定时,每份数(或份数)扩大或缩小若干倍,份数(或每份数)反而缩小或扩大相同的倍数。简称为“一扩一缩(或一缩一扩)”。具备这种变化关系的每份数和份数成反比例关系。反比例关系在典型应用题中属于归总问题。反映在除法中,当被除数一定,除数和商成反比例关系。在分数中,当分数的分子一定,分母与分数值成反比例关系。在比例中,比的前项一定,比的后项与比值成反比例关系。如果再把总数与份数关系具体化为:在购物问题中,总价一定,单价和数量成反比例关系。在行程问题中,路程一定,速度和时间成反比例关系。在做工问题中,工作总量一定,工作效率和工作时间成反比例关系。如果两种量成反比例,那么一种量的任意两个数的比,等于另一种量的两个对应数的反比。如,加工零件的总数一定,是600个。如果每小时加工10个,60个小时完成任务。如果每小时加工20个,30个小时完成任务。每小时加工数量的比1∶2,与它相对应的完成时间比是2∶1。2∶1是1∶2的反比。 教学反比例的意义采用类比逆向推理法。即,教学开始,首先由学生根据正比例的意义,直接写出反比例的意义: 两种相关联的量——→两种相关联的量, 一种量变化——→一种量变化 另一种量也随着变化——→另一种量也随着变化。 这两种量中相对应的两个数的比值一定——→这两种量中相对应的两个数的乘积一定 再由学生根据自己写出的反比例的意义,举出实例,加以验证。 之后,进一步理解反比例的意义。 ①分析反比例的意义。 成反比例的量包括三个数量,一个定量和两个变量。研究两个变量之间的扩大(或缩小)的变化关系。一种量发生变化,引起另一种量发生相反的变化。这两种量是反比例的量,它们的关系成反比例关系。 ②反比例实质 两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。这两种量叫做成反比例的量。它们的关系叫做反比例关系。 比较正、反比例: 相同点:①正比例和反比例都含有三个数量,在这三个数量中,均有一个定量、两个变量。 ②在正、反比例的两个变量中,均是一个量变化,另一个量也随之变化。并且变化方式均属于扩大(乘以一个数)或缩小(除以一个数)若干倍的变化。 不同点:正比例的定量是两个变量中相对应的两个数的比值。反比例的定量是两个变量中相对应的两个数的积。

文章TAG:什么是正比例  什么是正比例  
下一篇