本文目录一览

1,3角函数公式

tan =对边比邻边 cos =邻边比斜边 sin =对边比斜边 sin^2(a)+cos^(a)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 其他基本都可以用这几个推出来
tan a=A/B sin a=A/C cos a=B/C

3角函数公式

2,3角函数公式

公式: 设α为任意角,终边相同的角的同一三角函数的值相等:sin(α+k*2π)=sinα (k为整数)cos(α+k*2π)=cosα(k为整数)tan(α+k*2π)=tanα(k为整数)。三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。

3角函数公式

3,三角函数是什么

 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。   由于三角函数的周期性,它并不具有单值函数意义上的反函数。   三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。   基本初等内容   它有六种基本函数(初等基本表示):   函数名 正弦 余弦 正切 余切 正割 余割   在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有   正弦函数 sinθ=y/r   余弦函数 cosθ=x/r   正切函数 tanθ=y/x   余切函数 cotθ=x/y   正割函数 secθ=r/x   余割函数 cscθ=r/y   (斜边为r,对边为y,邻边为x。)   以及两个不常用,已趋于被淘汰的函数:   正矢函数 versinθ =1-cosθ   余矢函数 coversθ =1-sinθ 编辑本段同角三角函数间的基本关系式:   ·平方关系:   sin^2(α)+cos^2(α)=1 cos^2a=(1+cos2a)/2   tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2   cot^2(α)+1=csc^2(α)   ·积的关系:   sinα=tanα*cosα   cosα=cotα*sinα   tanα=sinα*secα   cotα=cosα*cscα   secα=tanα*cscα   cscα=secα*cotα   ·倒数关系:   tanα·cotα=1   sinα·cscα=1   cosα·secα=1   直角三角形ABC中,   角A的正弦值就等于角A的对边比斜边,   余弦等于角A的邻边比斜边   正切等于对边比邻边,   ·三角函数恒等变形公式   ·两角和与差的三角函数:   cos(α+β)=cosα·cosβ-sinα·sinβ   cos(α-β)=cosα·cosβ+sinα·sinβ   sin(α±β)=sinα·cosβ±cosα·sinβ   tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)   tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ
三角函数共有六个: 正弦 Sin 余弦 Cos 正切 Tan 余切 Cot 正割 Sec 余割 Csc 定义是,在平面直角坐标系中一个单位圆,某一条半径与x轴正轴的夹角,与其xy坐标构成的一个三角形.三角函数就是研究各个边与角的关系.

三角函数是什么

4,3角函数公式

三角函数公式包括和差角公式、和差化积公式、积化和差公式、倍角公式、诱导公式等。 诱导公式:1.公式1:设α为任意角,终边相同的角的同一三角函数的值相等2.公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系3.公式三:任意角α与-α的三角函数值之间的关系4. 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系6、公式六:π/2±α与α的三角函数值之间的关系。记背诀窍:奇变偶不变,符号看象限,即形如(2k+1)90°±α,则函数名称变为余名函 数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。

5,三角函数公式

0.基础的 cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ tαn(α+β)=(tαnα+tαnβ)/(1-tαnαtαnβ) tαn(α-β)=(tαnα+tαnβ)/(1+tαnαtαnβ) 1.万能公式 令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2) 2.辅助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a 3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] 4.积化和差 sina*cosb=[sin(a+b)+sin(a-b)]/2 cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 5.积化和差 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2] sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
0.基础的 cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ tαn(α+β)=(tαnα+tαnβ)/(1-tαnαtαnβ) tαn(α-β)=(tαnα+tαnβ)/(1+tαnαtαnβ) 1.万能公式 令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2) 2.辅助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a 3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] 4.积化和差 sina*cosb=[sin(a+b)+sin(a-b)]/2 cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 5.积化和差 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2] sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
不需要死记硬背,题目做多了自然就记住了,不过不用记也没关系,因为考试的时候一般都会给出的
remember the function and formula
首先记住公式,再做一定量的题目,我就是这么做的,效果挺好的

6,三角函数是什么

三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。六种基本函数函数名:正弦函数,余弦函数,正切函数,余切函数,正割函数,余割函数正弦函数 sinθ=y/r余弦函数 cosθ=x/r正切函数 tanθ=y/x余切函数 cotθ=x/y正割函数 secθ=r/x余割函数 cscθ=r/y同角三角函数(函数关系拓展)(1)平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)(2)积的关系:sinα=tanα*cosα cosα=cotα*sinαtanα=sinα*secα cotα=cosα*cscαsecα=tanα*cscα cscα=secα*cotα(3)倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1恒等变形公式两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

7,三角函数公式

三角函数中没有这个!~~~~你想:角的单位是度。。。角的乘积是度的平方。。在算三角函数是无意义的。。。
sin(a*b)=sina*cosb+sinb*cosa
sinα×cosβ+cosαsinβ
平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα ·半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] ·推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos4α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 ·其他: sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
sin30=0.5 sin45二份之根号二 sin60 二份之根号三

8,三角函数公式

公式分类同角三角函数的基本关系  tan α=sin α/cos α 平常针对不同条件的常用的两个公式  sin αˇ2+cos αˇ2=1   tan α *tan α 的邻角=1 锐角三角函数公式  正弦: sin α=∠α的对边/∠α 的斜边   余弦:cos α=∠α的邻边/∠α的斜边   正切:tan α=∠α的对边/∠α的邻边   余切:cot α=∠α的邻边/∠α的对边 二倍角公式  sin2A=2sinA?cosA   cos2A=cos^A-sin^A=1-2sin^A=2cos^A-1   tan2A=(2tanA)/(1-tan^2A) 三倍角公式   sin3α=4sinα·sin(π/3+α)sin(π/3-α)   cos3α=4cosα·cos(π/3+α)cos(π/3-α)   tan3a = tan a · tan(π/3+a)· tan(π/3-a)   三倍角公式推导    sin3a   =sin(2a+a)   =sin2acosa+cos2asina   =2sina(1-sin^2a)+(1-2sin^2a)sina   =3sina-4sin^3a   cos3a   =cos(2a+a)   =cos2acosa-sin2asina   =(2cos^2a-1)cosa-2(1-cos^a)cosa   =4cos^3a-3cosa   sin3a=3sina-4sin^3a   =4sina(3/4-sin^2a)   =4sina[(√3/2)^2-sin^2a]   =4sina(sin^260°-sin^2a)   =4sina(sin60°+sina)(sin60°-sina)   =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]   =4sinasin(60°+a)sin(60°-a)   cos3a=4cos^3a-3cosa   =4cosa(cos^2a-3/4)   =4cosa[cos^2a-(√3/2)^2]   =4cosa(cos^2a-cos^230°)   =4cosa(cosa+cos30°)(cosa-cos30°)   =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}   =-4cosasin(a+30°)sin(a-30°)   =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]   =-4cosacos(60°-a)[-cos(60°+a)]   =4cosacos(60°-a)cos(60°+a)   上述两式相比可得   tan3a=tanatan(60°-a)tan(60°+a) 半角公式  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);   cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.   sin^2(a/2)=(1-cos(a))/2   cos^2(a/2)=(1+cos(a))/2   tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 和差化积  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]    sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]   cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]   cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]   tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)   tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差  sinαsinβ = [cos(α-β)-cos(α+β)] /2   cosαcosβ = [cos(α+β)+cos(α-β)]/2   sinαcosβ = [sin(α+β)+sin(α-β)]/2   cosαsinβ = [sin(α+β)-sin(α-β)]/2 双曲函数  sinh(a) = [e^a-e^(-a)]/2   cosh(a) = [e^a+e^(-a)]/2   tanh(a) = sin h(a)/cos h(a)   公式一:   设α为任意角,终边相同的角的同一三角函数的值相等:   sin(2kπ+α)= sinα   cos(2kπ+α)= cosα   tan(2kπ+α)= tanα   cot(2kπ+α)= cotα   公式二:   设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:   sin(π+α)= -sinα   cos(π+α)= -cosα   tan(π+α)= tanα   cot(π+α)= cotα   公式三:   任意角α与 -α的三角函数值之间的关系:   sin(-α)= -sinα   cos(-α)= cosα   tan(-α)= -tanα   cot(-α)= -cotα   公式四:   利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:   sin(π-α)= sinα   cos(π-α)= -cosα   tan(π-α)= -tanα   cot(π-α)= -cotα   公式五:   利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:   sin(2π-α)= -sinα   cos(2π-α)= cosα   tan(2π-α)= -tanα   cot(2π-α)= -cotα   公式六:   π/2±α及3π/2±α与α的三角函数值之间的关系:   sin(π/2+α)= cosα   cos(π/2+α)= -sinα   tan(π/2+α)= -cotα   cot(π/2+α)= -tanα   sin(π/2-α)= cosα   cos(π/2-α)= sinα   tan(π/2-α)= cotα   cot(π/2-α)= tanα   sin(3π/2+α)= -cosα   cos(3π/2+α)= sinα   tan(3π/2+α)= -cotα   cot(3π/2+α)= -tanα   sin(3π/2-α)= -cosα   cos(3π/2-α)= -sinα   tan(3π/2-α)= cotα   cot(3π/2-α)= tanα   (以上k∈Z)   A·sin(ωt+θ)+ B·sin(ωt+φ) =   √{(A^2 +B^2 +2ABcos(θ-φ)} ? sin{ ωt + arcsin[ (A?sinθ+B?sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }   √表示根号,包括{……}中的内容 诱导公式  sin(-α) = -sinα   cos(-α) = cosα   tan (-α)=-tanα   sin(π/2-α) = cosα   cos(π/2-α) = sinα   sin(π/2+α) = cosα   cos(π/2+α) = -sinα   sin(π-α) = sinα   cos(π-α) = -cosα   sin(π+α) = -sinα   cos(π+α) = -cosα   tanA= sinA/cosA   tan(π/2+α)=-cotα   tan(π/2-α)=cotα   tan(π-α)=-tanα   tan(π+α)=tanα   诱导公式记背诀窍:奇变偶不变,符号看象限 万能公式   其它公式  (1) (sinα)^2+(cosα)^2=1   (2)1+(tanα)^2=(secα)^2   (3)1+(cotα)^2=(cscα)^2   证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可   (4)对于任意非直角三角形,总有   tanA+tanB+tanC=tanAtanBtanC   证:   A+B=π-C   tan(A+B)=tan(π-C)   (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)   整理可得   tanA+tanB+tanC=tanAtanBtanC   得证   同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立   由tanA+tanB+tanC=tanAtanBtanC可得出以下结论   (5)cotAcotB+cotAcotC+cotBcotC=1   (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)   (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC   (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC   其他非重点三角函数    csc(a) = 1/sin(a)   sec(a) = 1/cos(a)

文章TAG:函数  公式  3角函数  
下一篇