本文目录一览

1,有关三角函数的公式

诱导公式: sin(π-x)=sinx,cos(π-x)=-cosx,tan(π-x)=-tanx sin(π+x)=-sinx,cos(π+x)=-cosx,tan(π+x)=tanx sin(π/2+x)=cosx,cos(π/2+x)=-sinx sin(π/2-x)=cosx,cos(π/2-x)=sinx 恒等式如图

有关三角函数的公式

2,三角函数基本公式有哪些

常用三角函数公式如下:(^表示乘方,例如^2表示平方)。正弦函数sinθ=y/r。余弦函数cosθ=x/r。正切函数tanθ=y/x。余切函数cotθ=x/y。正割函数secθ=r/x。余割函数cscθ=r/y。积的关系:sinα = tanα × cosα(即sinα / cosα = tanα )。cosα = cotα × sinα (即cosα / sinα = cotα)。tanα = sinα × secα (即 tanα / sinα = secα)。倒数关系:tanα × cotα = 1。sinα × cscα = 1。cosα × secα = 1。

三角函数基本公式有哪些

3,三角函数的计算公式

正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 以及两个不常用,已趋于被淘汰的函数: 正矢函数 versinθ =1-cosθ 余矢函数 vercosθ =1-sinθ 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

三角函数的计算公式

4,三角函数公式是什么

公式为sinA=a/c,cosA=b/c,tanA=a/b。在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对∠BAC而言,对边a=BC、斜边c=AB、邻边b=AC。扩展资料:在三角函数中,有一些特殊角,例如30°、45°、60°,这些角的三角函数值为简单单项式,计算中可以直接求出具体的值。如:sin 30= 1/2sin 45=根号2/2sin 60= 根号3/2cos 30=根号3/2cos 45=根号2/2cos 60=1/2tan 30=根号3/3tan 45=1tan 60=根号3参考资料:百度百科—三角函数

5,求三角函数计算方法

三角函数常用公式:(^表示乘方,例如^2表示平方)正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 以及两个不常用,已趋于被淘汰的函数: 正矢函数 versinθ =1-cosθ 余矢函数 vercosθ =1-sinθ 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα ·半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=vercos(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
熟记三角函数公式

6,三角函数全部公式

三角函数公式如下:1、两角和公式:sin(A+B) = sinAcosB+cosAsinB、sin(A-B) = sinAcosB-cosAsinB、cos(A+B) = cosAcosB-sinAsinB、cos(A-B) = cosAcosB+sinAsinB。2、倍角公式:tan2A = 2tanA/(1-tan2 A)、Sin2A=2SinA·CosA、Cos2A = Cos^2 A–Sin2 A=2Cos2 A—1=1—2sin^2 A。3、三倍角公式:sin3A = 3sinA-4(sinA)3、cos3A = 4(cosA)3 -3cosA、tan3a = tana· tan(π/3+a)·tan(π/3-a)。4、半角公式:sin(A/2) = √5、和差化积:sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]、sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]、cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]、cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]。6、积化和差:sin(a)sin(b) = -1/2[cos(a+b)-cos(a-b)]、cos(a)cos(b) = 1/2[cos(a+b)+cos(a-b)]、sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]、cos(a)sin(b) = 1/2[sin(a+b)-sin(a-b)]。

7,三角函数的公式

最佳答案 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA)  cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 sin2A=2sinA*cosA 三倍角公式 sin3a=3sina-4(sina)^3 cos3a=4(cosa)^3-3cosa tan3a=tana*tan(π/3+a)*tan(π/3-a) 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) ) 2cosAcosB=cos(A+B)+cos(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB 积化和差公式 sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)] 诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(pi/2-a)=cos(a) cos(pi/2-a)=sin(a) sin(pi/2+a)=cos(a) cos(pi/2+a)=-sin(a) sin(pi-a)=sin(a) cos(pi-a)=-cos(a) sin(pi+a)=-sin(a) cos(pi+a)=-cos(a) tgA=tanA=sinA/cosA 万能公式 sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a)= (2tan(a/2))/(1-tan^2(a/2)) 其它公式 a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b] 1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2 其他非重点三角函数 csc(a)=1/sin(a) sec(a)=1/cos(a) 双曲函数 sinh(a)=(e^a-e^(-a))/2 cosh(a)=(e^a+e^(-a))/2 tgh(a)=sinh(a)/cosh(a)
同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα t

8,三角函数的计算公式是什么

余弦定理,正弦定理.角的代换,正切定理...
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 由于三角函数的周期性,它并不具有单值函数意义上的反函数。 三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。 它有六种基本函数: 函数名 正弦 余弦 正切 余切 正割 余割 符号 sin cos tan cot sec csc 正弦函数 sin(A)=a/h 余弦函数 cos(A)=b/h 正切函数 tan(A)=a/b 余切函数 cot(A)=b/a 在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)来表示。 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA)  cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 sin2A=2sinA*cosA 三倍角公式 sin3a=3sina-4(sina)^3 cos3a=4(cosa)^3-3cosa tan3a=tana*tan(π/3+a)*tan(π/3-a) 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) ) 2cosAcosB=cos(A+B)+cos(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB 积化和差公式 sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)] 诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(pi/2-a)=cos(a) cos(pi/2-a)=sin(a) sin(pi/2+a)=cos(a) cos(pi/2+a)=-sin(a) sin(pi-a)=sin(a) cos(pi-a)=-cos(a) sin(pi+a)=-sin(a) cos(pi+a)=-cos(a) tgA=tanA=sinA/cosA 万能公式 sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a)= (2tan(a/2))/(1-tan^2(a/2)) 其它公式 a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b] 1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2 其他非重点三角函数 csc(a)=1/sin(a) sec(a)=1/cos(a) 双曲函数 sinh(a)=(e^a-e^(-a))/2 cosh(a)=(e^a+e^(-a))/2 tgh(a)=sinh(a)/cosh(a)

文章TAG:三角  三角函数  三角函数公式  函数  三角函数公式  
下一篇