本文目录一览

1,函数的定义是什么

如果A、B都是非空的数集,那么A到B的映射f就叫做A到B的函数,记做y=f(x),其中x属于A,y属于B,原像的集合A叫做函数y=f(x)的定义域,象的集合C叫做函数y=f(x)的值域。

函数的定义是什么

2,函数是什么定义是什么

定义与定义式 自变量x和因变量y有如下关系: y=kx+b (k为任意不为零实数,b为任意实数) 则此时称y是x的一次函数。 特别的,当b=0时,y是x的正比例函数。 即:y=kx (k为任意不为零实数) 定义域:自变量的取值范围,自变量的取值应使函数有意义;若与实际相反,还应符合实际要求。

函数是什么定义是什么

3,函数的定义是啥

函数:(function)表示每个输入值对应唯一输出值的一种对应关系。函数f中对应输入值的输出值x的标准符号为f(x)。包含某个函数所有的输入值的集合被称作这个函数的定义域,包含所有的输出值的集合被称作值域。若先定义映射的概念,可以简单定义函数为,定义在非空数集之间的映射称为函数。 望采纳,谢谢!~

函数的定义是啥

4,函数是怎样定义的

现代函数概念──集合论下的函数   1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用不明确的概念“序偶”来定义函数,其避开了意义不明确的“变量”、“对应”概念。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”使豪斯道夫的定义很严谨了。   1930 年新的现代函数定义为“若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。”   术语函数,映射,对应,变换通常都有同一个意思。

5,什么是函数

有x是一个自变量 y是一个因变量 y随着x的变化而变化 那么 y是x的函数 x+y=1 就是函数 也就是y=1-x
函数:在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。 简单来说就是一对一 后者多对一的对应关系 例:一次函数:y=kx+b(k≠0) 正比例函数:y=kx(k≠0) 反比例函数:y=x/k(k≠0) 二次函数:y=ax平方+bx+c(a≠0)
函数是自变量和因变量的对应关系.例子:y=3x
函数(function)表示每个输入值对应唯一输出值的一种对应关系。函数f中对应输入值的输出值x的标准符号为f(x)。包含某个函数所有的输入值的集合被称作这个函数的定义域,包含所有的输出值的集合被称作值域。若先定义映射的概念,可以简单定义函数为,定义在非空数集之间的映射称为函数。
1.函数的定义 (1)函数的传统定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量. (2)函数的近代定义:设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域. 上述两个定义实质上是一致的,只不过传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发,侧重点不同.函数实质上是从集合A到集合B的一个特殊的映射,其特殊性在于集合A、B都是非空数集.自变量的取值集合叫做函数的定义域,函数值的集合C叫做函数的值域. 这里应该注意的是,值域C并不一定等于集合B,而只能说C是B的一个子集. 2.函数的三要素 定义域A,值域C以及从A到C的对应法则f,称为函数的三要素.由于值域可由定义域和对应法则唯一确定,所以也可以说函数有两要素:定义域和对应法则.两个函数当且仅当定义域与对应法则分别相同时,才是同一函数.

6,什么是函数概念

在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。 自变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值。 函数两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应量。函数的概念对于数学和数量学的每一个分支来说都是最基础的。 ~‖函数的定义: 设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作 y=f(x). 数集D称为函数的定义域,由函数对应法则或实际问题的要求来确定。相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素。 functions 数学中的一种对应关系,是从非空集合A到实数集B的对应。简单地说,甲随着乙变,甲就是乙的函数 。精确地说,设X是一个非空集合,Y是非空数集 ,f是个对应法则 , 若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应 , 就称对应法则f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,集合
在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。  其中自变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值。  因变量(也就是函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一一值与其相对应
函数是数学中的一种对应关系,是从非空数集A到实数集B的对应。简单地说,甲随着乙变,甲就是乙的函数。 例如:函数y=f(x)中的f,代表从变量x到变量y的对应关系。
函数(function)表示每个输入值对应唯一输出值的一种对应关系。函数f中对应输入值的输出值x的标准符号为f(x)。包含某个函数所有的输入值的集合被称作这个函数的定义域,包含所有的输出值的集合被称作值域。若先定义映射的概念,可以简单定义函数为,定义在非空数集之间的映射称为函数函数相关概念   自变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值。   因变量(函数),随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一一值与其相对应。 你可以去这看看 http://baike.baidu.com/view/15061.htm?fr=ala0_1
在某一变化过程中,有两个变量x,y.其中对于x在某一范围内每取一个值y都有唯一确定的值和它对应,这时我们就把y叫做x 的函数.其中x叫做自变量. Y=X+3
一个数的改变相对有唯一的值

7,函数的概念是什么

我认为在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。 函数的定义: 设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有且仅有一个确定的值y与之对应,称变量y为变量x的函数,记作 y=f(x).   数集D称为函数的定义域,由函数对应法则或实际问题的要求来确定。相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素。 数学中的一种对应关系,是从非空集合A到实数集B的对应。简单地说,甲随着乙变,甲就是乙的函数 。精确地说,设X是一个非空集合,Y是非空数集 ,f是个对应法则 , 若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应 , 就称对应法则f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,集合   若先定义映射的概念,可以简单定义函数为:定义在非空数集之间的映射称为函数。   例1:y=sinx X=[0,2π],Y=[-1,1] ,它给出了一个函数关系。当然 ,把Y改为Y1=(a,b) ,a<b为任意实数,仍然是一个函数关系。   其深度y与一岸边点 O到测量点的距离 x 之间的对应关系呈曲线,这代表一个函数,定义域为[0,b]。以上3示法:公式法 ,表格法和图像法。   一般地,在一个变化过程中并且对于X的每一个确定的值,Y都有唯一的值与其对应,Y是X的函数。如果当X=A时Y=B,那么B叫做当自变量。   复合函数<IMG src=" http://t10.baidu.7021061,4081051841&fm=0&gp=28.jpg" name=pn0>   有3个变量,y是u的函数,y=ψ(u),u是x的函数,u=f(x),往往能形成链:y通过中间变量u构成了x的   x→u→y,这要看定义域:设域为U,当U*&Iacute;U时,称f与ψ 构成一个复合函数 , 例如 y=lgsinx,x∈(0,π)。此时sinx>0 ,lgsinx有意义 。但如若规定x∈(-π,0),此时sinx<0 ,lgsinx无意义 ,就成不了复合函数。
函数的定义为: 1.传统定义(运动学观点下的定义):设在某变化过程中有两个变量 ,如果对于自变量 在某一范围...与 对应的 的值叫做函数值,函数值的集合 叫做函数 的值域. 3.两个定义在本质上是一致的,只是叙述的出发点...
函数(尽量不说到集合里的映射里去,因为我是自学的,我不清楚) 函数,就是一个因变量因自变量的变化而变化
函数是一种特殊的映射,就像正方形是矩形的一个特例一样,设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。我们将自变量x取值的集合叫做函数的定义域,和自变量x对应的y的值叫做函数值,函数值的集合叫做函数的值域。
就是一种对应法则下的对应(映射) 可以多对一 不能一对多
函数与映射。。。我现在啊不是太分的清。。。 好象函数是一一映射哦。。。不记得了

文章TAG:函数  定义  是什么  什么  函数的定义  
下一篇