本文目录一览

1,举例说明什么叫宇宙学

研究宇宙的起源,以及地球与太阳系相互关系的学说叫宇宙学。
你好!宇宙中的哲学仅代表个人观点,不喜勿喷,谢谢。

{0}

2,宇宙学是什么

宇宙学(cosmology),就是从整体的角度来研究宇宙的结构和演化的天文学分支学科。自古宇宙的结构就是人们关注的对象,历史上曾出现过各种各样的宇宙学说。中国的如浑天说、盖天说和宣夜说。其他国家的如古希腊阿利斯塔克的日心说、统治中世纪欧洲1000多年的地心说、16世纪波兰哥白尼的日心说等。牛顿力学创立以后,建立了经典宇宙学。到了20世纪,在大量天文观测资料和现代物理学的基础上产生了现代宇宙学。
学宇宙。

{1}

3,宇宙学需要哪些知识

最起码需要天文学的知识和比较高的数学能力(能对微分几何与拓扑学很熟练),还有物理学知识(量子论和广义相对论)。宇宙学是天文学的一个分支,宇宙学的入门书籍可以看看霍金的一些科普书,比如《时间简史》,还有爱德华·哈里森著的《宇宙学》(湖南科学技术出版社),很详细,也不难。
主要是物理学、化学和数学知识。 物理学是最基本的,包括力学、光学、原子物理学和核物理学,如果能对相对论物理学和量子物理学有所了解,会有助于宇宙学的学习。 化学主要是无机化学和有机化学。 数学是自然科学之母,是必备的知识。

{2}

4,宇宙学是什么

十万个冷知识
宇宙学(cosmology),就是从整体的角度来研究宇宙的结构和演化的天文学分支学科。自古宇宙的结构就是人们关注的对象,历史上曾出现过各种各样的宇宙学说。中国的如浑天说、盖天说和宣夜说。其他国家的如古希腊阿利斯塔克的日心说、统治中世纪欧洲1000多年的地心说、16世纪波兰哥白尼的日心说等。牛顿力学创立以后,建立了经典宇宙学。到了20世纪,在大量天文观测资料和现代物理学的基础上产生了现代宇宙学。
宇宙论(或宇宙学)是对宇宙整体的研究,并且延伸至探讨人类在宇宙中的地位。虽然宇宙学这个词是最近才有的,但是人们对宇宙的研究已经有很长的一段历史了,古希腊的托勒密是宇宙学已知的最早先驱。现代宇宙学是数学和物理的代名词,早已摒弃宗教和纯哲学概念,借助大型物理实验和超级望远镜,依托现代天文学,数学研究宇宙深层次的原理。如美国国家航空暨太空总署(NASA)协同国际伙伴建造的詹姆斯.韦伯太空望远镜将能观察大爆炸后约2亿年的景象。[1]

5,宇宙学有什么

现代宇宙学包括密切联系的两个方面,即观测宇宙学和理论宇宙学。前者 宇宙学侧重于发现大尺度的观测特征,后者侧重于研究宇宙的运动学和动力学以及建立宇宙模型。 观测宇宙学已经发现,在目前观测所及的天区上,存在着一些大尺度的系统性特征,比如:河外天体谱线红移;微波背景辐射;星系的形态;天体时标;氦丰度等。 除了几个近距星系之外,河外天体谱线大都有红移,而且绝大多数是一致红移,即各种谱线的红移量是相等的。此外,在星系团尺度上,对于不同类型的星系,在各自的红移量与视星等之间、红移与星系角径之间存在着系统性的关系。它们反映着红移量与距离之间的规律。 在整个背景辐射中,微波波段比其他波段都强,谱型接近温度为3K的黑体辐射。微波背景辐射大致是各向同性的。这种辐射的小尺度起伏不超过千分之二。三:大尺度的起伏则更小一些。 河外星系的形态虽有多种,但绝大多数星系都可归纳为不多的几种类型,即椭圆星系、旋涡星系、棒旋星系、透镜型星系和不规则星系。而且,各种类型星系的物理特征,弥散范围不算太大。 从球状星团的赫罗图形状可以判断,较老的球状星团的年龄差不多都达到100亿年左右。按照同位素年代学计算,太阳系中某些重元素是在50亿到100亿年前形成的,即最老天体的年龄都不超过200亿年。 在宇宙中,氢和氦是最丰富的元素,二者丰度之和约占99%。而且氢和氦的丰度比在许多不同的天体上均约为三比一左右。 这些大尺度上的现象,反映出大尺度天体系统具有特别的性质。它的结构、运动和演化并非小尺度天体系统的简单延长。现代宇宙学正是以研究这一系列大尺度上所固有的特征而与其他天文分支学科相区别的。 宇宙模型主要包括三方面的问题,即大尺度上天体系统的结构特征、运动形态和演化方式。关于大尺度上天体系统的结构,有两种不同的模型。一种是均匀模型,另一种是等级模型。前者认为在大尺度上天体分布基本上是均匀各向同性的,或者说,在大尺度上没有任何形式的中心,没有任何形式的特殊点,这种假定常常称为宇宙学原理。等级模型则认为在任何尺度上,物质分布都具有非均匀性,即天体分布是逐级成团的。

6,宇宙学的原理是什么简答

马 赫 原 理 马赫关于惯性的思想萌发于贝克莱的著作中,大体可归结为:(i)空间本身并不是一件“东西”,它仅仅是从物质间距离关系的总体中得到的一种抽象.(ii)一个质点的惯性是该质点与宇宙中所有其它物质相互作用的结果(可偌这种作用还不能详细加以说明).(iii)局部的无加速度判据决定于宇宙中全部物质运动的某种平均值.(iv)力学的全部实质是所有物质的相对运动。马赫写到:“......无论我们认为地球是绕自身轴旋转,或者认为是恒星绕地球旋转而地球处于静止,这都是无关紧要的.……惯性定律应当这样来表述:从第二种假定得到的结果与从第一种假定得到的完全相同.”也许值得注意的是,甚至在爱因斯坦之前,马赫就把自己和他的追随者归结为“相对论者”了。 一个旋转着的弹性球在其赤道附近鼓起.这个球是怎样“知道”它在旋转因而必须鼓起的呢?对于这个问题,牛顿可以这样回答:它“感觉”到绝对空间的作用.而马赫将这样回答:它“感觉”到围绕它旋转的宇宙物质的作用.对牛顿来说,相对于绝对空间的转动产生(惯性)离心力,这种力和万有引力完全不 同;对马赫来说,离心力也是万有引力,因为它是由物质对物质的作用引起的。
任何客观存在的具体物质都有自己的结构,都在运动和变化;同样,“宇宙”这个客观存在也应该有结构,也要不断地演化。结构和形态的组成,演化通俗的讲就是指生老病死。研究宇宙结构和演化的科学就叫宇宙学。 宇宙学研究的对象是整个可观测时空范围的大尺度特征。目前已探测到的距离尺度是150亿光年,时间尺度是100亿年,包含一亿个星系。根据星系计数、射电源计数和微波背景辐射等实测资料得知,在大于一亿光年的宇观范围内,物质的空间分布是均匀的和各向同性的。作为研究宇宙学的前提,宇宙学家建立了一个资用假设(working hypothesis)。这个假设就叫作宇宙学原理,就是说在宇宙学尺度上,任何时刻,三维空间是均匀的和各向同性的。它的含意是:①在宇宙学尺度上,空间任一点和任一点的任一方向,在物理上是不可分辨的,即无论其密度、压强、曲率、红移都是完全相同的。但同一点,在不同时刻,其各种物理量却可以不同,所以宇宙学原理容许存在宇宙演化。②宇宙中各处的观测者,观察到的物理量和物理规律是完全相同的,没有任何一个观测者是特殊的。地球上观察到的宇宙演化图景,在其他天体上也会看到,所以能建立宇宙时概念。既然任何随时间演变的天体和现象都可以用来标度时间,宇宙图景也能作为时间标度。在宇宙中,处处有完全相同的宇宙图景,也有完全相同的宇宙时。 完全宇宙学原理[1]是宇宙学原理的进一步推广。它的大意是:不仅三维空间是均匀的和各向同性的,整个宇宙在不同时刻也是完全相同的。根据宇宙学原理可以推导出演化态宇宙的罗伯逊-沃尔克度规。运用完全宇宙学原理则能得到稳恒态宇宙度规,利用不同的度规可建立各种宇宙模型。还有,这位朋友,以后这种题目没必要在这里提问的,你大可以去一些百科栏目查询一下就可以了,比这个提问的快多了。

7,什么是宇宙学

宇宙学是从整体的角度来研究宇宙的结构和演化的天文学分支学科。 在中国古代,关于宇宙的结构主要有三派学说,即盖天说、浑天说和宣夜说。盖天说认为大地是干坦的,天像一把伞覆盖着大地;浑天说认为天地具有球状结构,地在中心,天在周围;宣夜说则认为天是无限而空虚的,星辰就悬浮在空虚之中。 在古代希腊和罗马,从公元前六世纪到公元一世纪,关于宇宙的构造和本原有过许多学说。如毕达哥拉斯学派的中心火焰说(设想宇宙中心有一团大火焰);赫拉克利特的日心说;柏拉图的正多面体宇宙结构模型等等。 进入中世纪后,宇宙学被纳入经院哲学体系,地心说占据正统的地位。十六世纪哥白尼倡导日心说。到十七世纪,牛顿开辟了以力学方法研究宇宙学的途径,建立了经典宇宙学。二十世纪以来,在大量的天文观测资料和现代物理学的基础上,产生了现代宇宙学。 从历史上看,随着时代的发展,作为宇宙学研究对象的天体系统,在深度和广度上不断扩展。古代自然哲学家所讨论的天文学的宇宙,不外乎大地和天空。哥白尼在《天体运行论》一书中说“太阳是宇宙的中心”,意味着宇宙实质上就是太阳系。 十八世纪天文学家引进“星系”一词,当时这个词在一定意义上说只不过是宇宙的同义语。二十世纪以来,天文观测的尺度大大扩展,达到上百亿年和上百亿光年的时空区域。现代宇宙学所研究的课题,就是现今观测直接或间接所及的整个天区的大尺度特征,即大尺度时空的性质、物质运动的形态和规律。 现代宇宙学包括密切联系的两个方面,即观测宇宙学和理论宇宙学。前者侧重于发现大尺度的观测特征,后者侧重于研究宇宙的运动学和动力学以及建立宇宙模型。 观测宇宙学已经发现,在目前观测所及的天区上,存在着一些大尺度的系统性特征,比如:河外天体谱线红移;微波背景辐射;星系的形态;天体时标;氦丰度等。 除了几个近距星系之外,河外天体谱线大都有红移,而且绝大多数是一致红移,即各种谱线的红移量是相等的。此外,在星系团尺度上,对于不同类型的星系,在各自的红移量与视星等之间、红移与星系角径之间存在着系统性的关系。它们反映着红移量与距离之间的规律。 在整个背景辐射中,微波波段比其他波段都强,谱型接近温度为3K的黑体辐射。微波背景辐射大致是各向同性的。这种辐射的小尺度起伏不超过千分之二。三:大尺度的起伏则更小一些。 河外星系的形态虽有多种,但绝大多数星系都可归纳为不多的几种类型,即椭圆星系、旋涡星系、棒旋星系、透镜型星系和不规则星系。而且,各种类型星系的物理特征,弥散范围不算太大。 从球状星团的赫罗图形状可以判断,较老的球状星团的年龄差不多都达到100亿年左右。按照同位素年代学计算,太阳系中某些重元素是在50亿到 100亿年前形成的,即最老天体的年龄都不超过200亿年。 在宇宙中,氢和氦是最丰富的元素,二者丰度之和约占99%。而且氢和氦的丰度比在许多不同的天体上均约为三比一左右。 这些大尺度上的现象,反映出大尺度天体系统具有特别的性质。它的结构、运动和演化并非小尺度天体系统的简单延长。现代宇宙学正是以研究这一系列大尺度上所固有的特征而与其他天文分支学科相区别的。 宇宙模型主要包括三方面的问题,即大尺度上天体系统的结构特征、运动形态和演化方式。关于大尺度上天体系统的结构,有两种不同的模型。一种是均匀模型,另一种是等级模型。前者认为在大尺度上天体分布基本上是均匀各向同性的,或者说,在大尺度上没有任何形式的中心,没有任何形式的特殊点,这种假定常常称为宇宙学原理。等级模型则认为在任何尺度上,物质分布都具有非均匀性,即天体分布是逐级成团的。 河外天体的系统性红移现象与大尺度的运动形态有密切关系。说明红移现象的各种理论,都要涉及这个问题。大致说来,这些理论分为两种类型: 第一种理论认为系统性红移是系统性运动的反映,各种膨胀宇宙模型都属于这一类。第二种理论认为红移现象不是系统性运动的结果,而是由另外的机制形成的。例如假定光子在传播过程中,能量慢慢衰减;或者假定红移是由天体本身结构不同而引起的,等等。 演化问题的探讨自从红移发现之后就开始了,但是大量的研究还是在微波背景辐射发现之后才进行的。根据微波背景辐射的黑体谱,可以用某个温度来标志大尺度天区的性质。问题是:背景辐射从何而来?这个温度是怎样变化的?温度变化对天体系统的状态有什么影响?这就是宇宙模型要回答的问题。 按照大尺度特征变化与否来区分,有稳恒态宇宙模型和演化态模型。前者认为大尺度上的物质分布和物理性质不随时间变化;后者则认为随着时间的推移基本特征有明显变化。 按照与温度有关的演化方式来区分,则有热模型和冷模型。前者主张温度是从高到低,后者主张温度是从低到高发展的。 按照物质组成来区分,有“正”物质模型和“正—反”物质模型。前者主张宇宙全由“正”物质组成,后者主张由等量的“正”物质和“反”物质组成。 在已有的各种宇宙模型中,以热大爆炸宇宙模型最有影响,因为与其他模型相比,它能说明的观测事实最多。

文章TAG:宇宙  宇宙学  举例  举例说明  宇宙学  
下一篇