本文目录一览

1,数学应该总结应该如何写

以写“粗心”为主,我经常写!

数学应该总结应该如何写

2,数学总结怎麽写

找教案啊
看着书把你觉得是重点的写下来。

数学总结怎麽写

3,高考数学知识点总结

http://wenku.baidu.com/view/c901713610661ed9ad51f335.html 上网看看

高考数学知识点总结

4,学期总结作文数学的求大神啊

小学数学期中总结范文 昨天全年级进行了半期测试,回想起考试的那一幕,场面还真的有点吓人:全年级7个班,班班都进行了单人单座,不大的活动厅里挤满了各班的半数学生。看着孩子们冻得瑟瑟发抖的样儿,我只好让他们背上书包以供取暖。连教导主任竟然连本班的草稿纸都统一提供。真不明白一个小学教育为什么竟整的比高考还高考?不是常常说新的教学理念吗?不是常常要求我们要落实有效教学吗?难道这样的模式就是有效教学的体现?就是真正的以人为本?我不懂,也不想弄明白。因为在残酷的考试成绩面前,我只有学会装糊涂。 通览本班的试卷,有太多的让我吃惊:平时数学特别拔尖的人居然仅仅得90分;数学组长竟然有三道应用题没做;平时最认真的同学也仅仅及格。最可气的是竟然还有那么几个人王不及格!这在以前可是从来没有过的事儿。尤其是本学期合并校分来的一个学生,居然只得了15分,将我的努力瞬间化为灰烬。此情此景,我还有什么动力可言?每年的六年级为了追求教学质量,给毕业班老师规定每班的及格率必须达到100%,优生率达到85%以上等等,面对明年六年级的教学目标我怎能实现?既然如此,分配转学生的时候为什么不相对公平一些?导致现在好的班越来越好,差的班越来越糟糕,上演了现代版的“精彩极了”和“糟糕透了”。 客观情况既然存在,我只有尽全力去适应、去弥补,尽量缩小班级之间的差距。为此我将在后半期的教学中更加严格一些,对待后进生的时间更多一些,强化学生的基础训练,昧着自己的良心以成绩为上上线去折磨学生,干着自己本就特别讨厌的死整。因为在偌大的学校里,在众多的同事面前,我清高不起来,只有这样去做,唯一能做的就是用成绩说话。 1、训练学生的自觉性, 2、强化学生数学方法的渗透。 3、边上新课边进行知识的梳理与归纳。 4、以优带差,促全班齐努力。 5、基础知识确保扎实、并能灵活运用。 6、平静中时刻反思自己的教学,及时改进。 7、利用好班级qq群,每天将有进步的、表现好的及时予以公布。 8、与后进生家长取得联系,实行双管齐下。 希望用自己的努力换来应有的结果。
我有

5,跪求500字左右的1篇数学总结

这次期末考试的数学方面,我只得了87分。头脑的一时迷糊使我在基础单项选择上失去三分,填空题中一个审题的失误又让我扣了3分。最后一题的考虑不当让我丢了四分。虽然背面的大题做得还可以,没有扣一分。可是基础把分又丢了回来正面的填空选择一共让我失去9分。我需要抓牢基础,提高综合题的能力,争取下次考试取得好成绩。 第一,认真听老师讲课。这是取得好成绩的主要原因。听讲时要做到全神贯注,聚精会神,跟着老师的思路走,不能开小差,更切忌一边讲话一边听讲。其次要专心凝听老师讲的每一个字,因为数学是以严谨著称的,一字之差就非同小可,一字之间就隐藏玄机无限。听讲时还要注意记笔记。比如老师讲了一个高难度的几何题,一时没有听懂,但也要记下了这道题以及解法,回家后仔细琢磨。 第二,上课还要积极举手发言,举手发言的好处可真不少!①可以巩固当堂学到的知识。②锻炼了自己的口才。③那些模糊不清的观念和错误能得到老师的指教。真是一举三得。总之,听讲要做到手到、口到、眼到、耳到、心到。 第三,课外练习。孔子曰:“学而时习之”。课后作业也是学习和巩固数学的重要环节。注意解题的精度和速度。精度就是准确度,专心致志地独立完成作业,力求一次性准确,而一旦有了错,要及时改正。而速度是为了锻炼自己注意力集中,有紧迫感。经常这样做,这样有助于提高作业速度。考试时,就不会紧张,也不会顾此失彼了。 第三,复习、预习。对数学的复习,预习一般定在每天晚上,在完成当天作业后,将第二天要学的新知识简要地看一看,再回忆一下老师已讲过的内容。睡觉时躺在床上,脑海里再像看电影一样将老师上课的过程“看”一遍,如果有什么疑难,立即爬起来看书,直到搞懂为止。每个星期天还作一星期功课的小结复习、预习。这样对学数学有好处,并掌握得牢固,就不会忘记了。 第四,提高。在完成作业和预习、复习之后,就做一些爬坡题。做这类题,尽可能自己独立思考,努力找出隐藏的条件,这是解题的关键。如果实在想不出来就需要看一看参考书,以及请教师长和同学。总之,要做到多看、多做、多问、虚心、勤奋,保持积极向上的精神这才是关键的关键。 科学的学习方法不只这几种,各人都有自己的绝招,只要大家互相交流经验,取长补短,成绩一定会提高的。总结如下: 1.思考:思考是数学学习方法的核心。在学这门课中,思考有重大意义。解数学题时,首先要观察、分析、思考。思考往往能发现题目的特点,找出解题的突破口、简便的解题方法。在我们周围,凡是真正学得好的同学,都有勤于思考,经常开动脑筋的习惯,于是脑子就越用越灵,勤于思考变成了善于思考。 2.多练:动手有助于消化学习过的知识,做到融会贯通。课下,常常把老师讲过的公式进行推导,推导时不要看书,要默记。这样就能使自己对公式掌握滚瓜烂熟,可为公式变形计算打下扎实的基础。 3.培养创造精神:所谓创造,就是想出新办法,做出新成绩,建立新理论。创造,就要不局限于老师、课本讲的方法。平时,有一些难度高的题目,在听懂了老师讲的方法后,还要自己去找一找有没有另外的解法,这样能加深对题目的理解,能比较几种解法的利弊,使解题思维达到一个更高的境界.

6,初中数学总结怎么写

经过几年的课改实践,我感觉自己的角色和教学策略与以前比较发生了很大的变化。通过认真执行学校教育教学工作计划,转变思想,积极探索,改革教学,在继续推进我校“自主——创新”课堂教学模式的同时,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学,收到很好的效果。 一、课程标准走进教师的心,进入课堂 《国家数学课程标准》对数学的教学内容,教学方式,教学评估教育价值观等多方面都提出了许多新的要求。无疑我们每位数学教师身置其中去迎接这种挑战,是我们每位教师必须重新思考的问题。鲜明的理念,全新的框架,明晰的目标,有效的学习对新课程标准的基本理念,设计思路,课程目标,内容标准及课程实施建议有更深的了解,在新课程标准的指导教育教学改革跃上了一个新的台阶。 《新课程标准》在无数双期待的目光中呼之而出,其"倡导自主、合作、探究的学习"这一重要理念深入人心,课堂上大家都在尝试或积极准备尝试转变传统的教学方式,构建"小组合作"的学习方式,其中不乏许多成功的经验与案例,但更多的只是"披着羊皮的狼"。她的形式简单易学,几个人分成一组,七嘴八舌,谓之"小组合作学习",一些公开课用之者更甚,以博取大家的美言;一些竞赛课用之者也不乏其人,以显示对新课程标准的理解。但是明眼人一看便知其中的"奥秘"。究竟是学生问题,还是教师假以"小组合作学习"来搞"包装"?……就目前而言,许多课堂中"小组合作"搞得轰轰烈烈、五彩斑斓,但美丽的外表只是一种形式,实在无法掩饰其空虚的内心,不得不令人匪夷所思。 授课教师已从以前的单纯知识传授转变为帮助学生发现问题,探究真理;不仅教学生学会知识,更重要的是教学生学会学习,学会做事,学会与人合作。老师已从以前的演员转变成了现在的导演,从权威变成了学习者的挚友,从评价者变成了参与者。通过有效的教学方法和手段,达到使学生不仅学到知识,而且掌握学习这些知识的方法和手段,并且爱学数学,为今后的学习打下基础。师生关系从以往的"先知先觉"的绝对权威地位转变为教师尊重学生,与学生在人格上是平等的朋友关系。在课堂上,我们看到了教师允许学生发表自己的独到见解,看到了教师不是告诉学生问题的答案,而是帮助学生学会如何得到信息,如何提取有效信息和运用信息解决问题。二、 课堂教学,师生之间学生之间交往互动,共同发展。 我们每位数学教师都是课堂教学的实践者,为保证新课程标准的落实,我们把课堂教学作为有利于学生主动探索的数学学习环境,把学生在获得知识和技能的同时,在情感、态度价值观等方面都能够充分发展作为教学改革的基本指导思想,把数学教学看成是师生之间学生之间交往互动,共同发展的过程,在教研组长的带领下,紧扣新课程标准,和我校“自主——创新”的教学模式。努力处理好数学教学与现实生活的联系,努力处理好应用意识与解决问题的重要性,重视培养学生应用数学的意识和能力。重视培养学生的探究意识和创新能力。 常思考,常研究,常总结,以科研促课改,以创新求发展, 进一步转变教育观念,坚持“以人为本,促进学生全面发展,打好基础,培养学生创新能力”,以“自主——创新”课堂教学模式的研究与运用为重点,努力实现教学高质量,课堂高效率。三、新课改使我们面临挑战 我们面临许多挑战:由于学生学习方式的转变,在课堂教学活动中学生是不是积极主动投入到探索之中?他们对学习是不是充满热情,是不是积极思考问题?老师是不是也投入到学生的活动中,对学生的研究进行适时的启发和指导,促进学生更有效的学习活动?是不是把学生作为教学的出发点?是不是给学生留下充分的思维空间等等,这些问题确实值得我们深思。还有一些问题,提出让同行共同磋商:  1、教师唱主角的现象依然存在,学生的学是为了配合教师的教,教师期望学生按教案设计做出回答,并努力诱导学生、得出预定答案,学生学会如何揣摩老师的心理。  2、教学要有程序,但不能程序化,仍有一些教师过分依赖教案,出现硬拽学生进入教师预定的轨迹中的现象。  3、如何更好体现小组合作学习的价值?小组合作学习表面上形式热热闹闹,但小组讨论的有效性没有很好体现,有些问题的抛出,学生没有经过独立思考就进行交流,这是没有意义的、无效的学习。  4、运用多媒体课件演示的教学是按课件走,还是按学生走,是关注活生生的课堂,产生真切的师生互动,还是流于形式。有些课看似热热闹闹,但流于形式没有实效。  5、教师如何把思考还给学生。四、一堂好的数学课应具备哪些我认为:一节好的数学课应具备以下特征:  (1)确定符合实际的内容范围和难度要求。  (2)为学生创设宽松和谐的学习环境。   (3)关注学生的学习过程,让学生体会数学学习与获得成功的机会。  (4)尊重学生的需要,保护学生的自尊心和自信心。  (5)运用灵活的方法,适应学生的实际和内容的要求。  (6)为学生留下思考的时间。一节好课应是让学生主动参与学习,学生是课堂的教学主体,使每一个学生在参与的过程中体验学习的快乐,获得心智的发展。 一节好课能让学生受益一生,课堂教学需要的是完整的人的教育,不仅仅是让学生获得一种知识,还是让学生拥有一种精神,一种立场,一种态度,一种不懈的追求,好课留给学生的精神是永恒的。 一份耕耘,一份收获。教学工作苦乐相伴。我们将本着“勤学、善思、实干”的准则,一如既往,再接再厉,把工作搞得更好。

7,高一数学总结如何写

主要写一下工作内容,取得的成绩,以及不足,最后提出合理化的建议或者新的努力方向。。。。。。  总结,就是把一个时间段的情况进行一次全面系统的总检查、总评价、总分析、总研究,分析成绩、不足、经验等。总结是应用写作的一种,是对已经做过的工作进行理性的思考。总结与计划是相辅相成的,要以计划为依据,制定计划总是在个人总结经验的基础上进行的。  总结的基本要求  1.总结必须有情况的概述和叙述,有的比较简单,有的比较详细。这部分内容主要是对工作的主客观条件、有利和不利条件以及工作的环境和基础等进行分析。  2.成绩和缺点。这是总结的中心。总结的目的就是要肯定成绩,找出缺点。成绩有哪些,有多大,表现在哪些方面,是怎样取得的;缺点有多少,表现在哪些方面,是什么性质的,怎样产生的,都应讲清楚。  3.经验和教训。做过一件事,总会有经验和教训。为便于今后的工作,须对以往工作的经验和教训进行分析、研究、概括、集中,并上升到理论的高度来认识。  今后的打算。根据今后的工作任务和要求,吸取前一时期工作的经验和教训,明确努力方向,提出改进措施等  总结的注意事项  1.一定要实事求是,成绩不夸大,缺点不缩小,更不能弄虚作假。这是分析、得出教训的基础。2.条理要清楚。总结是写给人看的,条理不清,人们就看不下去,即使看了也不知其所以然,这样就达不到总结的目的。     3.要剪裁得体,详略适宜。材料有本质的,有现象的;有重要的,有次要的,写作时要去芜存精。总结中的问题要有主次、详略之分,该详的要详,该略的要略。 总结的基本格式   1、标题   2、正文  开头:概述情况,总体评价;提纲挈领,总括全文。  主体:分析成绩缺憾,总结经验教训。  结尾:分析问题,明确方向。  3、落款  署名,日期
高中高一数学必修1各章知识点总结 第一章 集合与函数概念 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5} 2.集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:n 正整数集 n*或 n+ 整数集z 有理数集q 实数集r 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a 记作 a∈a ,相反,a不属于集合a 记作 a?a 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x?r| x-3>2}或{x| x-3>2} 4、集合的分类: 1.有限集 含有有限个元素的集合 2.无限集 含有无限个元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意: 有两种可能(1)a是b的一部分,;(2)a与b是同一集合。 反之: 集合a不包含于集合b,或集合b不包含集合a,记作a b或b a 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设 a={x|x2-1=0} b={-1,1} “元素相同” 结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b ① 任何一个集合是它本身的子集。aía ②真子集:如果aíb,且a1 b那就说集合a是集合b的真子集,记作a b(或b a) ③如果 aíb, bíc ,那么 aíc ④ 如果aíb 同时 bía 那么a=b 3. 不含任何元素的集合叫做空集,记为φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的运算 1.交集的定义:一般地,由所有属于a且属于b的元素所组成的集合,叫做a,b的交集. 记作a∩b(读作”a交b”),即a∩b={x|x∈a,且x∈b}. 2、并集的定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集。记作:a∪b(读作”a并b”),即a∪b={x|x∈a,或x∈b}. 3、交集与并集的性质:a∩a = a, a∩φ= φ, a∩b = b∩a,a∪a = a, a∪φ= a ,a∪b = b∪a. 4、全集与补集 (1)补集:设s是一个集合,a是s的一个子集(即 ),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集) 记作: csa 即 csa ={x | x?s且 x?a} s csa a (2)全集:如果集合s含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用u来表示。 (3)性质:⑴cu(c ua)=a ⑵(c ua)∩a=φ ⑶(cua)∪a=u 二、函数的有关概念 1.函数的概念:设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a→b为从集合a到集合b的一个函数.记作: y=f(x),x∈a.其中,x叫做自变量,x的取值范围a叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈a }叫做函数的值域. 注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。) 构成函数的三要素:定义域、对应关系和值域 再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) (见课本21页相关例2) 值域补充 (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈a)中的x为横坐标,函数值y为纵坐标的点p(x,y)的集合c,叫做函数 y=f(x),(x ∈a)的图象. c上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在c上 . 即记为c={ p(x,y) | y= f(x) , x∈a } 图象c一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与y轴的直线最多只有一个交点的若干条曲线或离散点组成。 (2) 画法 a、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点p(x, y),最后用平滑的曲线将这些点连接起来. b、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用: 1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。 发现解题中的错误。 4.快去了解区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 5.什么叫做映射 一般地,设a、b是两个非空的集合,如果按某一个确定的对应法则f,使对于集合a中的任意一个元素x,在集合b中都有唯一确定的元素y与之对应,那么就称对应f:a b为从集合a到集合订搐斥诽俪赌筹涩船绩b的一个映射。记作“f:a b” 给定一个集合a到b的映射,如果a∈a,b∈b.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象 说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合a、b及对应法则f是确定的;②对应法则有“方向性”,即强调从集合a到集合b的对应,它与从b到a的对应关系一般是不同的;③对于映射f:a→b来说,则应满足:(ⅰ)集合a中的每一个元素,在集合b中都有象,并且象是唯一的;(ⅱ)集合a中不同的元素,在集合b中对应的象可以是同一个;(ⅲ)不要求集合b中的每一个元素在集合a中都有原象。 常用的函数表示法及各自的优点: 1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值 补充一:分段函数 (参见课本p24-25) 在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 补充二:复合函数 如果y=f(u),(u∈m),u=g(x),(x∈a),则 y=f[g(x)]=f(x),(x∈a) 称为f、g的复合函数。 例如: y=2sinx y=2cos(x2+1) 7.函数单调性 (1).增函数 设函数y=f(x)的定义域为i,如果对于定义域i内的某个区间d内的任意两个自变量x1,x2,当x11,且 ∈ *. 当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand). 当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。 注意:当 是奇数时, ,当 是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: , 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 (1) · ; (2) ; (3) . (二)指数函数及其性质 1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为r. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a>1 0<1 图象特征 函数性质 向x、y轴正负方向无限延伸 函数的定义域为r 图象关于原点和y轴不对称 非奇非偶函数 函数图象都在x轴上方 函数的值域为r+ 函数图象都过定点(0,1) 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1 图象上升趋势是越来越陡 图象上升趋势是越来越缓 函数值开始增长较慢,到了某一值后增长速度极快; 函数值开始减小极快,到了某一值后减小速度较慢; 注意:利用函数的单调性,结合图象还可以看出: (1)在[a,b]上, 值域是 或 ; (2)若 ,则 ; 取遍所有正数当且仅当 ; (3)对于指数函数 ,总有 ; (4)当 时,若 ,则 ; 二、对数函数 (一)对数 1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式) 说明:1 注意底数的限制 ,且 ; 2 ; 3 注意对数的书写格式. 两个重要对数: 1 常用对数:以10为底的对数 ; 2 自然对数:以无理数 为底的对数的对数 . 对数式与指数式的互化 对数式 指数式 对数底数 ← → 幂底数 对数 ← → 指数 真数 ← → 幂 (二)对数的运算性质 如果 ,且 , , ,那么: 1 · + ; 2 - ; 3 . 注意:换底公式 ( ,且 ; ,且 ; ). 利用换底公式推导下面的结论(1) ;(2) . (二)对数函数 1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞). 注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。 如: , 都不是对数函数,而只能称其为对数型函数. 2 对数函数对底数的限制: ,且 . 2、对数函数的性质: a>1 0<1 图象特征 函数性质 函数图象都在y轴右侧 函数的定义域为(0,+∞) 图象关于原点和y轴不对称 非奇非偶函数 向y轴正负方向无限延伸 函数的值域为r 函数图象都过定点(1,0) 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于0 (三)幂函数 1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸; (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴. 第三章 函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。 2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即: 方程 有实数根 函数 的图象与 轴有交点 函数 有零点. 3、函数零点的求法: 求函数 的零点: 1 (代数法)求方程 的实数根; 2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数 . 1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点. 2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.

文章TAG:数学  总结  应该  如何  数学总结  
下一篇