本文目录一览

1,向量的计算公式

向量a=&向量b

向量的计算公式

2,向量的有关计算法则

若向量a=(x1,y1),b=(x2,y2),则向量a+b=(x1+x2,y1+y2)

向量的有关计算法则

3,向量的运算法则

Oa·Ob=2×1×cos150°=-√3 Ob·Oc=0 Oa·Oc=2×3×cos120°=-3 设Oc=xOa+yOb Oc2=xOa·Oc+yOb·Oc=-3x=9 x=-3 Ob·Oc=xOa·Ob+yOb·Ob=3√3+y=0 y=-3√3 Oc=-3Oa-3√3Ob

向量的运算法则

4,急需数学有关向量的公式

1.单位向量:单位向量a0=向量a/|向量a| 2.P(x,y)那么向量OP=x向量i+y向量j |向量OP|=根号(x^2+y^2) 3.P1(x1,y1)P2(x2,y2) 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根号[(x2-x1)^2+(y2-y1)^2] 4.向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b| (x1x2+y1y2) 根号(x1^2+y1^2)*根号(x2^2+y2^2) 5.空间向量:同上推论 (提示:向量a={x,y,z}) 6.充要条件: 如果向量a⊥向量b 那么向量a*向量b=0 如果向量a//向量b 那么向量a*向量b=±|向量a|*|向量b| 或者x1/x2=y1/y2 7.|向量a±向量b|^2 =|向量a|^2+|向量b|^2 ±2向量a*向量b =(向量a±向量b)^2

5,向量的运算的所有公式有哪些

向量的加法满足平行四边形法则和三角形法则, 向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。向量的加法满足平行四边形法则和三角形法则,向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。向量的数量积的运算律a·b=b·a(交换律)(λa)·b=λ(a·b)(关于数乘法的结合律)(a+b)·c=a·c+b·c(分配律)向量的数量积的性质a·a=|a|的平方。a⊥b〈=〉a·b=0。|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)向量的向量积运算律a×b=-b×a(λa)×b=λ(a×b)=a×(λb)a×(b+c)=a×b+a×c.(a+b)×c=a×c+b×c.

文章TAG:向量  计算  公式  向量计算公式  
下一篇