本文目录一览

1,高中数学教学设计

你好,推-介你看一下问酷网,上面有专门针-对老师、学生和家长不同的学习指导方法,还可以下载APP直-接在手机上用,很方便-而且免&费,我现在高中,初中的时候就经常去这个网-站做题,看虎单港竿蕃放歌虱攻僵视频,感觉对自己提高挺高的,所以你可以去下载APP看一下,希望对你有用啦~
你好,推-介你看一下问酷网,上面有专门针-对老师、学生和家长不同的学习指导方法,还可以下载app直-接在手机上用,很方便-而且免&费,我现在高中,初中的时候就经常去这个网-站做题,看视频,感觉对自己提高挺高的,所以你可以去下载app看一下,希望对你有用啦~

高中数学教学设计

2,高中数学活动课教案怎么制定

高中数学的学习中,立体几何是一个全新的内容,因此,立体几何的开篇就显得至关重要。立体几何第一节课的教学目标,应该使学生对立体几何产生宏观上的认识,有个初步的整体把握,使学生初步明确立体几何的思想方法,明确立体几何研究的主要内容,清楚研究的价值所在,引发其好奇心,激发其对立体几何的学习兴趣。第一节课的教学目标如下:一、教学目标1.知识与技能(1)通过实物操作,计算机软件观察大量空间图形,增强学生的直观感知。(2)能根据几何结构特征对空间物体进行分类。(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。(4)会表示有关于几何体以及柱、锥、台的分类。2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。(2)让学生观察、讨论、归纳、概括所学的知识。3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。(2)培养学生的空间想象能力和抽象括能力。
不明白啊 = =!

高中数学活动课教案怎么制定

3,怎样设计一份优质高效的高中数学教案

写教案的具体内容包括以下十项:一.课题(说明本课名称)二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)三.课型(说明属新授课,还是复习课)四.课时(说明属第几课时)五.教学重点(说明本课所必须解决的关键性问题)六.教学难点(说明本课的学习时易产生困难和障碍的知识点)七.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)九.板书设计(说明上课时准备写在黑板上的内容)十.教具(或称教具准备,说明辅助教学手段使用的工具)在教案书写过程中,教学过程是关键,它包括以下几个步骤:(一)导入新课1.设计新颖活泼,精当概括。3.提问那些学生,需用多少时间等。(二)讲授新课1.针对不同教学内容,选择不同的教学方法.。(三)巩固练习1.练习设计精巧,有层次、有坡度、有密度。(四)归纳小结(五)作业安排布置那些内容,要考虑知识拓展性、能力性。
http://www.isud.com.cn/soft/sort01/sort03/sort0305/index_1.html

怎样设计一份优质高效的高中数学教案

4,求高中数学教案

人教版高三数学教案选[高中数学教案]教学章节:数学归纳法2教学章节:数学归纳法应用4教学章节:充要条件6教学章节:椭圆的定义11教学章节:椭圆及其标准方程14教学章节:椭圆及其标准方程17教学章节:椭圆的简单几何性质20教学章节:椭圆的几何性质23教学章节:椭圆及其标准方程27教学章节:椭圆及其标准方程30
http://www.zhaojiaoan.com/soft/sort01/sort03/sort0305/index_1.html 无穷等比数列各项的和教学设计 数学归纳法及其应用举例教学设计 合情推理教学设计 简单的三角恒等变换教案 向量的概念教学设计 向量的概念教案 向量的线性运算教学设计 数乘向量教学设计 向量共线的条件与轴上向量坐标运算教学设计 平面向量的基本定理及坐标表示教案 向量数量积的定义及运算率教案 向量数量积的坐标运算和度量公式教案 人教版必修4 平面向量的数量积教案 人教版必修4 平面向量应用举例教案 人教版必修4第二章平面向量小结教案 平面向量基本定理及平面向量的正交分解及坐标表示教学设计 直线和平面平行的判定与性质教案 直线与平面平行的判定教学设计 直线与平面平行的判定教案 直线和平面平行与平面和平面平行教案 平面向量基本定理及坐标表示教学设计 向量的加法教案 向量的加法教学设计 向量的加法运算及其几何意义教案 双曲线的简单几何性质第一课时教案 双曲线的简单几何性质学案 求动圆圆心的轨迹教学设计 用二分法求方程的近似解教案 空间向量的坐标运算教案 函数的解析式教学设计

5,求助高中数学教案怎么写 准备教学能力考试用

高中数学说课稿常用模板  课题:_________________________(说课稿)  一、说教材:  1、地位、作用和特点:  《______________________》是高中数学课本第_______册(______修)的第______章“__________”的第________节内容。  本节是在学习了________________________________________之后编排的。通过本节课的学习,既可以对_________________________________的知识进一步巩固和深化,又可以为后面学习_________________________打下基础,所以_________________是本章的重要内容。此外,《________________________》的知识与我们日常生活、生产、科学研究______________________________有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是:____________________;  特点之二是:_________________。  2、教学目标:  根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:  (1)知识目标:A、B、C  (2)能力目标:A、B、C  (3)德育目标:A、B  3、教学的重点和难点:  (1)教学重点:  (2)教学难点:  二、说教法:  基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:  三、说学法:  学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。  1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。  本节教师通过列举具体事例来进行分析,归纳出________________________,并依据此知识与具体事例结合、推导出___________________________,这正是一个分析和推理
新课标第一网

6,高中数学如何教学案例分析

首先写教学目标,现在是课改阶段上课要有新的理念分三部分:知识、能力、情感态度价值观。 然后分析教材:重点和难点 三 教具 四 教学方法 五 教学过程,可分详案和简案,详案要设想每句话怎么讲比较麻烦,简案只要写一下时间安排,和每部分教师的活动和学生的活动 六 板书提纲 七 教学反馈 这样的教案就比较完整,也能及时地总结问题。 我认为写教案最重要的是先确立教学理念,也就是第一部分,千万不能小看了这部分,否则上课就会漫无目的,效果比较差。
《正弦定理》教学案例分析 一、教学内容: 本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。 二、教材分析: 1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书.数学必修5》(a版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。 2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。 三、教学目标: 1、知识目标: 把握正弦定理,理解证实过程。 2、能力目标: (1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。 (2)增强学生的协作能力和数学交流能力。 (3)发展学生的创新意识和创新能力。 3、情感态度与价值观: (1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。 (2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。 四、教学设想: 本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下: 五、教学过程: (一)创设问题情景 课前放映一些有关军事题材的图片,并在课首给出引例:一天,我核潜艇a正在某海域执行巡逻任务,忽然发现其正东处有一敌艇b正以30海里/小时的速度朝北偏西40°方向航行。经研究,决定向其发射鱼雷给以威慑性打击。已知鱼雷的速度为60海里/小时,问怎样确定发射角度可击中敌舰? [设计一个学生比较感爱好的实际问题,吸引学生注重力,使其马上进入到研究者的角色中来!](二)启发引导学生数学地观察问题,构建数学模型。 用几何画板模拟演示鱼雷及敌舰行踪,在探讨鱼雷发射角度的过程中,抽象出一个解三角形问题: 1、考察角a的范围,回忆“大边对大角”的性质 2、让学生猜测角a的准确角度,由ac=2bc,从而b=2a从而抽象出一个雏形:3、测量角a的实际角度,与猜测有误差,从而产生矛盾:定性研究如何转化为定量研究?4、进一步修正雏形中的公式,启发学生大胆想象:以及等 [直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!](三)引导学生用“特例到一般”的研究方法,猜想数学规律。 提出问题:1、如何对以上等式进行检验呢?激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,筛选出能成立的等式2、那这一结论对任意三角形都适用吗?指导学生用刻度尺、圆规、计算器等工具对一般三角形进行验证。 3、让学生总坚固验结果,得出猜想: 在三角形中,角与所对的边满足关系[“特例→类比→猜想”是一种常用的科学的研究思路!](四)让学生进行各种尝试,探寻理论证实的方法。 提出问题:1、如何把猜想变成定理呢?使学生注重到猜想和定理的区别,强化学生思维的严密性。 2、怎样进行理论证实呢?培养学生的转化思想,通过作高转化为熟悉的直角三角形进行证实。 3、你能找出它们的比值吗?借以检验学生是否把握了以上的研究思路。用几何画板动画演示,找到比值,突破难点。 4、将猜想变为定理,并用以解决课首提出的问题,并进行适当的思想教育。 [学生成为发现者,成为创造者!让学生享受成功的喜悦!](五)反思总结,布置作业 1、正弦定理具有对称和谐美 2、“类比→实验→猜想→证实”是一种常用的研究问题的思路和方法 课下思考:三角形中还有其它的边角定量关系吗? 六、板书设计: 正弦定理

7,谁能帮忙找一份高中数学教学案例

《正弦定理》教学案例分析 一、教学内容: 本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。 二、教材分析: 1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书.数学必修5》(A版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。 2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。 三、教学目标: 1、知识目标: 把握正弦定理,理解证实过程。 2、能力目标: (1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。 (2)增强学生的协作能力和数学交流能力。 (3)发展学生的创新意识和创新能力。 3、情感态度与价值观: (1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。 (2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。 四、教学设想: 本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下: 五、教学过程: (一)创设问题情景 课前放映一些有关军事题材的图片,并在课首给出引例:一天,我核潜艇A正在某海域执行巡逻任务,忽然发现其正东处有一敌艇B正以30海里/小时的速度朝北偏西40°方向航行。经研究,决定向其发射鱼雷给以威慑性打击。已知鱼雷的速度为60海里/小时,问怎样确定发射角度可击中敌舰? [设计一个学生比较感爱好的实际问题,吸引学生注重力,使其马上进入到研究者的角色中来!](二)启发引导学生数学地观察问题,构建数学模型。 用几何画板模拟演示鱼雷及敌舰行踪,在探讨鱼雷发射角度的过程中,抽象出一个解三角形问题: 1、考察角A的范围,回忆“大边对大角”的性质 2、让学生猜测角A的准确角度,由AC=2BC,从而B=2A从而抽象出一个雏形:3、测量角A的实际角度,与猜测有误差,从而产生矛盾:定性研究如何转化为定量研究?4、进一步修正雏形中的公式,启发学生大胆想象:以及等 [直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!](三)引导学生用“特例到一般”的研究方法,猜想数学规律。 提出问题:1、如何对以上等式进行检验呢?激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,筛选出能成立的等式2、那这一结论对任意三角形都适用吗?指导学生用刻度尺、圆规、计算器等工具对一般三角形进行验证。 3、让学生总坚固验结果,得出猜想: 在三角形中,角与所对的边满足关系[“特例→类比→猜想”是一种常用的科学的研究思路!](四)让学生进行各种尝试,探寻理论证实的方法。 提出问题:1、如何把猜想变成定理呢?使学生注重到猜想和定理的区别,强化学生思维的严密性。 2、怎样进行理论证实呢?培养学生的转化思想,通过作高转化为熟悉的直角三角形进行证实。 3、你能找出它们的比值吗?借以检验学生是否把握了以上的研究思路。用几何画板动画演示,找到比值,突破难点。 4、将猜想变为定理,并用以解决课首提出的问题,并进行适当的思想教育。 [学生成为发现者,成为创造者!让学生享受成功的喜悦!](五)反思总结,布置作业 1、正弦定理具有对称和谐美 2、“类比→实验→猜想→证实”是一种常用的研究问题的思路和方法 课下思考:三角形中还有其它的边角定量关系吗? 六、板书设计: 正弦定理
教学目标   (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.  (2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.  (3)掌握直线方程各种形式之间的互化.  (4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.  (5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.  (6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法. 教学建议 1.教材分析(1)知识结构  由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.

文章TAG:高二  数学  教案  高中  高二数学教案  
下一篇