1,初一上册数学重点知识点归纳

数学学习数学不光有做一些习题,还要注重知识点的总结与归纳。下面,我为大家整理一下初一上册数学重点知识点归纳仅供大家参考。 初一上册数学重点知识点:有理数 (一)正负数 1.正数:大于0的数。 2.负数:小于0的数。 3.0即不是正数也不是负数。 4.正数大于0,负数小于0,正数大于负数。 ( 二)有理数 1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π) 2.整数:正整数、0、负整数,统称整数。 3.分数:正分数、负分数。 (三)数轴 1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。) 2.数轴的三要素:原点、正方向、单位长度。 3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。 4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 (四)有理数的加减法 1.先定符号,再算绝对值。 2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。 3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。 4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 5.a-b=a+(-b)减去一个数,等于加这个数的相反数。 绝对值 (1)绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。(2)正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。?a(a?0)?|a|?0(a?0)??a(a?0)?越来越大或?a(a?0)|a|???a(a?0)-3-2-10123(3)绝对值的性质:①除0外,绝对值为正数的数有两个,它们互为相反数;②互为相反数的两数(除0外)的绝对值相等;即:|a|=|b|,则a+b=0③任何数的绝对值总是非负数,即|a|≥0④对任何有理数a,都有|a|=|-a|5.比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。 以上就是我为大家整理的初一上册数学重点知识点归纳,希望能帮助到大家,更多中考信息请继续关注本站!

初一上册数学重点知识点归纳

2,初一上册数学知识点总结归纳

初一数学是初中数学的基础,这篇文章我给大家总结归纳了初一上册数学课本的重要知识点,供同学们参考。 有理数 (1)定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。 (2)数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。 (3)相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。 (4)绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 (5)有理数的加减法 同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。 (6)有理数的乘法 两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数与0相乘,积为0.例:0×1=0 (7)有理数的除法 除以一个不为0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。0除 以任何一个不为0的数,都得0。 (8)有理数的乘方 求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当a?看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。 一元一次方程 (1)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫做方程。 (2)一元一次方程 一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。 (3)等式的性质 ①等式两边同时加上(或减去)同一个整式,等式仍然成立。 若a=b 那么a+c=b+c ②等式两边同时乘或除以同一个不为0的整式,等式仍然成立。 若a=b 那么有a·c=b·c或a÷c=b÷c(c≠0) ③等式具有传递性。 若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an (3)解方程式的步骤 解一元一次方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。 ①去分母:把系数化成整数。 ②去括号 ③移项:把等式一边的某项变号后移到另一边。 ④合并同类项 ⑤系数化为1。 角的知识点 1.角:角是由两条有公共端点的射线组成的几何对象。 2.角的度量单位:度、分、秒 3.顶点:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点 4.角的比较: (1)角可以看成是由一条射线绕着他的端点旋转而成的。 (2)平角和周角:一条射线绕着他的端点旋转,当始边和终边成一条直线时,所成的角叫平角。当它又和始边重合的时候,所成的角角周角。平角等于108度,周角等于360度,直角等于90度。 (3)平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 5.余角和补角: (1)余角:如果两个角的和是90度,那么称这两个角“互为余角”,简称“互余”。 性质:等角的余角相等。 (2)补角:如果两个角的和是180度,那么称这两个角“互为补角”,简称“互补”。 性质:等角的补角相等。

初一上册数学知识点总结归纳

3,数学初一上册知识点汇总

要想学好数学一定要理清书本上的重点知识,接下来给大家分享初一数学上册的重要知识点,供参考! 有理数 1.大于0的数叫做正数。 2.在正数前面加上负号“-”的数叫做负数。 3.整数和分数统称为有理数。 4.人们通常用一条直线上的点表示数,这条直线叫做数轴。 5.在直线上任取一个点表示数0,这个点叫做原点。 6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。 7.由绝对值的定义可知: 一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数; 0的绝对值是0。 8.正数大于0,0大于负数,正数大于负数。 9.两个负数,绝对值大的反而小。 10.有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加。 (2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。 (3)一个数同0相加,仍得这个数。 11.有理数的加法中,两个数相加,交换交换加数的位置,和不变。 12.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 13.有理数减法法则:减去一个数,等于加上这个数的相反数。 14.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。 15.有理数中仍然有:乘积是1的两个数互为倒数。 16.一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。 17.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。 18.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。 19.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。 20.两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 21.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。 22.根据有理数的乘法法则可以得出: 负数的奇次幂是负数,负数的偶次幂是正数。 显然,正数的任何次幂都是正数,0的任何次幂都是0。 23.做有理数混合运算时,应注意以下运算顺序: (1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行; (3)如有括号,先做括号内的运算,按小括号.中括号.大括号依次进行。 相反数和绝对值 1.相反数:只有符号不同的两个数互为相反数,0的相反数是0。在数轴上位于原点两侧且离原点距离相等。 2.绝对值的几何意义:一个数所对应的点离原点的距离叫做该数的绝对值。 3.绝对值的代数定义:(1)一个正数的绝对值是它本身;(2)一个负数数的绝对值是它的相反数;(3)0的绝对值是0;(4)|a|大于或者等于0。 4.比较两个数的大小关系 在数轴上表示有理数,它们从左到右的顺序,就是从大到小的顺序,即左边的数小于右边的数。由此可知:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。 平行线 1.在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。 2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 4.判定两条直线平行的方法: (1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。 (2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。 (3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。 5.平行线的性质 (1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。 (2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。 (3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

数学初一上册知识点汇总


文章TAG:初一  上册  数学  知识  初一上册数学知识点  
下一篇