本文目录一览

1,有关对数函数的公式

一次函数:y=kx+b 二次大学:y=ax^+bx+c

有关对数函数的公式

2,对数函数运算公式是甚么

如果a^b=N,则b=logaN叫对数。其计算公式有loga1=0loga(MN)=logaM+logaNlog(M/N)=logaM-logaNlog(N^M)=MlogaNlogaN=logbN/logba叫对数的换底公式log10N=lgN叫经常使用对数logeN=lnN叫自然对数(其中e=2.718281....)

对数函数运算公式是甚么

3,求高中数学的对数函数的公式 急

对数基本恒等式:a^log_a_N=N 积的对数等于对数的和log(MN)=logM+logN 省略底数a 商的对数等于对数的差log(M/N)=logM-logN 幂的对数等于对数的对数乘指数log(N^m)=mlogN 根式的对数等于被开方数的对数除以根指数log[N^(1/n)]=(1/n)logN 对数的换底公式:log_b_N=log_a_N/log_a_b

求高中数学的对数函数的公式 急

4,对数函数的公式

1、a^(log(a)(b))=b  2、log(a)(a^b)=b  3、log(a)(MN)=log(a)(M)+log(a)(N);  4、log(a)(M÷N)=log(a)(M)-log(a)(N);  5、log(a)(M^n)=nlog(a)(M)  6、log(a^n)M=1/nlog(a)(M)
n=log(a)(b)

5,关於高中数学对数函数的公式

当a>0且a≠1时,M>0,N>0,那么:   (1)log(a)(MN)=log(a)(M)+log(a)(N);   (2)log(a)(M/N)=log(a)(M)-log(a)(N);   (3)log(a)(M^n)=nlog(a)(M) (n∈R)   (4)log(a^n)(M)=1/nlog(a)(M)(n∈R)   (5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)   (6)a^(log(b)n)=n^(log(b)a) 证明:   设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)   (7)对数恒等式:a^log(a)N=N;   log(a)a^b=b   (8)由幂的对数的运算性质可得(推导公式)   1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M   2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M   3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M   4.log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M ,   log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(n/m)log(a)M   5.log(a)b×log(b)c×log(c)a=1对数与指数之间的关系  当a>0且a≠1时,a^x=N x=㏒(a)N

6,对数函数的公式有

对数的定义和运算性质 一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。 底数则要大于0且不为1对数的运算性质: 当a>0且a≠1时,M>0,N>0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M) (n∈R) (4)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)对数与指数之间的关系 当a>0且a≠1时,a^x=N x=㏒(a)N对数函数的常用简略表达方式:(1)log(a)(b)=log(a)(b) (2)常用对数:lg(b)=log(10)(b) (3)自然对数:ln(b)=log(e)(b) e=2.718281828... 通常情况下只取e=2.71828 对数函数的定义 对数函数的一般形式为 y=㏒(a)x,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y。因此指数函数里对于a的规定(a>0且a≠1),同样适用于对数函数。 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。[编辑本段]性质 定义域:(0,+∞)值域:实数集R 定点:函数图像恒过定点(1,0)。 单调性:a>1时,在定义域上为单调增函数,并且上凸; 0<a<1时,在定义域上为单调减函数,并且下凹。 奇偶性:非奇非偶函数 周期性:不是周期函数 零点:x=1

7,关于对数函数的公式

由于指数函数y=ax在定义域(-∞,+∞)上是单调函数,所以它存在反函数 我们把指数函数y=ax(a>0,a≠1)的反函数称为对数函数,并记为y=logax(a>0,a≠1). 因为指数函数y=ax的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=logax的定义域为(0,+∞),值域为(-∞,+∞). 2.对数函数的图像与性质 对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x.据此即可以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=logax(a>0,a≠1)的性质,我们在同一直角坐标系中作出函数y=log2x,y=log10x,y=log10x,y=log x,y=log x的草图 由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=logax(a>0,a≠1)的图像的特征和性质.见下表. 图 象 a>1 a<1 性 质 (1)定义域为x>0 (2)当x=1时,y=0 (3)当x>1时,y>0 0<x<1时,y<0 (3)当x>1时,y<0 0<x<1时,y>0 (4)在(0,+∞)上是增函数 (4)在(0,+∞)上是减函数 补充 性质 设y1=logax y2=logbx其中a>1,b>1(或0<a<1 0<b<1= 当x>1时“底大图低”即若a>b>1则y1>y2 当0<x<1时“底大图高”即若1>a>b>0,则y1>y2 利用函数的单调性可进行对数大小的比较.比较对数大小的常用方法有: (1)若底数为同一常数,则可由对数函数的单调性直接进行判断. (2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论. (3)若底数不同、真数相同,则可用换底公式化为同底再进行比较. (4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较. 3.指数函数与对数函数对比 为了揭示对数函数与指数函数之间的内在联系,下面列出这两种函数的对照表. 指数函数与对数函数对照表 名称 指数函数 对数函数 一般形式 y=ax(a>0,a≠1) y=logax(a>0,a≠1) 定义域 (-∞,+∞) (0,+∞) 值域 (0,+∞) (-∞,+∞) 函 数 值 变 化 情 况 当a>1时, 当0<a<1时, 当a>1时 当0<a<1时, 单调性 当a>1时,ax是增函数; 当0<a<1时,ax是减函数. 当a>1时,logax是增函数; 当0<a<1时,logax是减函数. 图像 y=ax的图像与y=logax的图像关于直线y=x对称.

文章TAG:对数函数  函数  公式  大全  对数函数公式大全  
下一篇