有理数和无理数的区别,请问无理数和有理数的区别是什么嘞谢谢
来源:整理 编辑:去留学呀 2023-08-10 08:20:16
本文目录一览
1,请问无理数和有理数的区别是什么嘞谢谢
无理数无法用纯数字表示(不用任何除了小数点与循环标志的符号),有理数可以
2,什么是有理数和无理数怎么区分啊
无理数是无限不循环小数,如:0.10100100010000·······实数中除了无理数外都是有理数
3,有理数和无理数怎么分别
有理数和无理数统称实数
无理数是无限不循环小数,如根号2,pai等
有理数就不用说了像小数也是的:17/23, 13/79,只要是循环小数和0正数,负数都是有理数
4,什么是无理数与有理数有什么区别
任何一个有理数都可以写成是一个有限小数(整数可看成小数位为0的小数)或者无限循环小数.
而无理数是无限不循环小数.
而π是一个无限不循环小数,因此是一个无理数有理数是可以写成p/q(p与q互质,就是除了1之外没有其他的约数)的形式,而无理数是不可以写成这样形式的数的。
5,有理数和无理数有什么区别
要区别有两点:
第一,把有理数和无理数都写成小数形式时,有理数能写成有限小
第二,所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫“比数”,把无理数改叫“非比数”.本来嘛,无理数并不是不讲道理,只是人们最初对它太不理解罢了.
6,有理数和无理数的区别是什么
有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 简单来讲,能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。实数(R)可以分为有理数(Q)和无理数,其中无理数就是无限不循环小数,有理数就是有限小数和无限循环小数;其中有理数又可以分为整数(Z)和分数;整数按照能否被2整除又可以分为奇数(不能被2整除的整数)和偶数(能被2整除的整数)。有理数(Q)有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。比如4=4.0, 4/5=0.8。无理数(R-Q)无理数也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。二者区别有理数和无理数都能写成小数形式,但是,有理数可以写为有限小数和无限循环小数,而无理数只能写为无限不循环小数。有理数可以写为整数之比,而无理数不能。简单来讲,能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。
7,有理数和无理数的区别
有理数能写成分数形式,而无理数则不能,有理数和无理数就是这样定义的无限不循环小数和开根开不尽的数叫无理数 整数和分数统称为有理数 包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。
这一定义在数的十进制和其他进位制(如二进制)下都适用。无限不循环小数和开根开不尽的数叫无理数
整数和分数统称为有理数
数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο? ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。
所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。
如3,-98.11,5.72727272……,7/22都是有理数。
有理数还可以划分为正有理数、负有理数和0。
全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。
有理数集是实数集的子集。相关的内容见数系的扩张。
有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):
①加法的交换律 a+b=b+a;
②加法的结合律 a+(b+c)=(a+b)+c;
③存在数0,使 0+a=a+0=a;
④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0;
⑤乘法的交换律 ab=ba;
⑥乘法的结合律 a(bc)=(ab)c;
⑦分配律 a(b+c)=ab+ac;
⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a1=a;
⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。
⑩0a=0
此外,有理数是一个序域,即在其上存在一个次序关系≤。
有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a。由此不难推知,不存在最大的有理数。
值得一提的是有理数的名称。“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。
有理数加减混合运算
1.理数加减统一成加法的意义:
对于加减混合运算中的减法,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的式子是几个正数或负数的和的形式,我们把这样的式子叫做代数和。能否表示为有限的几个分数或小数、整数的和。(注意一定是有限的)有理数能写成分数形式,而无理数则不能
例如 圆周率 无理数为无限不循环小数 有理数是除了无限不循环小数的其他所有数
文章TAG:
有理 有理数 数和 无理 有理数和无理数的区别