本文目录一览

1,什么是余弦定理

在一个直角三角形中,一个锐角的邻边比斜边
我记得余弦定理应该是: 对于任意三角形:a2=b2+c2-2bccosA

什么是余弦定理

2,余弦定理公式是什么

在直角三角形中,一个锐角的余弦=它的邻边 / 斜边,一个锐角的正弦=它的对边 / 斜边比如一个三角形ABC中,∠C=90°.则AB叫做斜边,AC叫做∠A的邻边,BC叫做∠A的对边.所以,cosA=AC/AB,sinA=BC/AB.同理cosB=BC/AB,sinB=AC/AB余弦定理是针对任意三角形的.比如三角形ABC中,如果∠A,∠B,∠C的对边分别用a、b、c来表示那么就有如下关系:a2=b2+c2-2bccosAb2=a2+c2-2accosBc2=a2+b2-2abcosC扩展资料:判定定理一 两根判别法:若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取减号的值。①若m(c1,c2)=2,则有两解;②若m(c1,c2)=1,则有一解;③若m(c1,c2)=0,则有零解(即无解)。注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。参考资料来源:百度百科—余弦定理

余弦定理公式是什么

3,什么是余弦定理

余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

什么是余弦定理

4,什么是余弦定理

a2=b2+c2-2bc*cosA b2=a2+c2-2ac*cosB c2=a2+b2-2ab*cosC
答案:余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活. 对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质 a^2=b^2+c^2-2*b*c*CosA b^2=a^2+c^2-2*a*c*CosB c^2=a^2+b^2-2*a*b*CosC CosC=(a^2+b^2-c^2)/2ab CosB=(a^2+c^2-b^2)/2ac CosA=(c^2+b^2-a^2)/2bc

5,什么是余弦定理

如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角一定是直角,如果小于第三边的平方,那么第三边所对的角是钝角,如果大于第三边,那么第三边所对的角是锐角。
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活.对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质a^2=b^2+c^2-2*b*c*CosAb^2=a^2+c^2-2*a*c*CosBc^2=a^2+b^2-2*a*b*CosCCosC=(a^2+b^2-c^2)/2abCosB=(a^2+c^2-b^2)/2acCosA=(c^2+b^2-a^2)/2bc 我想入啊!怎么样
a^2=b^2+c^2-2*b*c*CosA
余弦定理:设三角形的三边为a b c,他们的对角分别为A B C 关系式: a^2=b^2+c^2-2bc*cosA b^2=c^2+a^2-2ac*cosB c^2=a^2+b^2-2ab*cosC

6,余弦定理的内容是什么

对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质a^2=b^2+c^2-2*b*c*CosA b^2=a^2+c^2-2*a*c*CosB c^2=a^2+b^2-2*a*b*CosC
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质—— (注:a*b、a*c就是a乘b、a乘c 。a^2、b^2、c^2就是a的平方,b的平方,c的平方。) a^2=b^2+c^2-2*b*c*CosA b^2=a^2+c^2-2*a*c*CosB c^2=a^2+b^2-2*a*b*CosC CosC=(a^2+b^2-c^2)/2ab CosB=(a^2+c^2-b^2)/2ac CosA=(c^2+b^2-a^2)/2bc
设角a,b,c对应的边分别为a,b,c 则 a2=b2+c2-2bccosa b2=a2+c2-2accosb c2=b2+a2-2bacosc 变形 cosa=(b2+c2-a2)/2bc cosb=(a2+c2-b2)/2ac cosc=(b2+a2-c2)/2ba
三角形三边a b c,对应角(对着的角)A B C有关系:a^2+b^2-c^2=2abcosC其他边邮相应的关系c^2+a^2-b^2=2accosBb^2+c^2-a^2=2bccosA

7,余弦定理是什么

余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 余弦定理性质 : 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质——   a^2 = b^2 + c^2 - 2·b·c·cosA   b^2 = a^2 + c^2 - 2·a·c·cosB   c^2 = a^2 + b^2 - 2·a·b·cosC   cosC = (a^2 + b^2 - c^2) / (2·a·b)   cosB = (a^2 + c^2 - b^2) / (2·a·c)   cosA = (c^2 + b^2 - a^2) / (2·b·c)   (物理力学方面的平行四边形定则中也会用到)   第一余弦定理(任意三角形射影定理)   设⊿ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有   a=b·cosC+c·cosB, b=c·cosA+a·cosC, c=a·cosB+b·cosA。
基本公式a2=b2+c2-2bc cosA 推得cosA = (c^2 + b^2 - a^2) / (2·b·c) 其中 a b c可互换 证明方法可用向量(等式两边平方)也可用几何方法(做条垂线)
a*2=b*2+c*2-2bccosA 好像是这样
额………对边的旁边分之斜边
a^2 = b^2 + c^2 - 2·b·c·cosA   b^2 = a^2 + c^2 - 2·a·c·cosB   c^2 = a^2 + b^2 - 2·a·b·cosC    cosC = (a^2 + b^2 - c^2) / (2·a·b)   cosB = (a^2 + c^2 - b^2) / (2·a·c)   cosA = (c^2 + b^2 - a^2) / (2·b·c) 用这个还可以计算向量上的问题。。总之还挺重要的!
a2=b2+c2-2bc cosθ cosθ为b c 的夹角

8,余弦定理 什么意思详细解答谢谢

就是在直角三角形中,一个角的对边和邻边的比值
上面说的貌似有些错误,不然就是太冗长了引用我在http://wenwen.soso.com/z/q313502536.htm这个问题里的回答吧: 三角形任意一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍 这里是余弦定理的无字证明 http://thcdusman.com/566.html 顺便说一下,勾股定理是余弦定理的一种特殊情况 因为cos90=0 其实没有那么难,如果是竞赛的话初中就会学到,一般的学习高中也会接触到希望对您有帮助!
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 编辑本段余弦定理性质 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质—— (注:a*b、a*c就是a乘b、a乘c 。a^2、b^2、c^2就是a的平方,b的平方,c的平方。) a^2=b^2+c^2-2*b*c*CosA b^2=a^2+c^2-2*a*c*CosB c^2=a^2+b^2-2*a*b*CosC CosC=(a^2+b^2-c^2)/2ab CosB=(a^2+c^2-b^2)/2ac CosA=(c^2+b^2-a^2)/2bc 编辑本段余弦定理证明 平面向量证法: ∵如图,有a+b=c (平行四边形定则:两个邻边之间的对角线代表两个邻边大小) ∴c·c=(a+b)·(a+b) ∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ) (以上粗体字符表示向量) 又∵Cos(π-θ)=-CosC ∴c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式) 再拆开,得c^2=a^2+b^2-2*a*b*CosC 同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。 平面几何证法: 在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sinB2·c2+a^2+cosB2·c^2-2ac*cosB b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 编辑本段余弦定理的作用 (1)已知三角形的三条边长,可求出三个内角; (2)已知三角形的两边及夹角,可求出第三边. (3)已知三角形两边及其一边对角,可求其它的角和第三条边。(见解三角形公式,推导过程略。) 判定定理一(两根判别法): 若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取 减号的值 ①若m(c1,c2)=2,则有两解; ②若m(c1,c2)=1,则有一解; ③若m(c1,c2)=0,则有零解(即无解)。 注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。 判定定理二(角边判别法): 一当a>bsinA时 ①当b>a且cosA>0(即A为锐角)时,则有两解; ②当b>a且cosA<=0(即A为直角或钝角)时,则有零解(即无解); ③当b=a且cosA>0(即A为锐角)时,则有一解; ④当b=a且cosA<=0(即A为直角或钝角)时,则有零解(即无解); ⑤当b<a时,则有一解 二当a=bsinA时 ①当cosA>0(即A为锐角)时,则有一解; ②当cosA<=0(即A为直角或钝角)时,则有零解(即无解); 三当a<bsinA时,则有零解(即无解); 解三角形公式 例如:已知△ABC的三边之比为:2:1,求最大的内角. 解 设三角形的三边为a,b,c且a:b:c=:2:1. 由三角形中大边对大角可知:∠A为最大的角.由余弦定理 cos A==- 所以∠A=120°. 再如△ABC中,AB=2,AC=3,∠A=60度,求BC之长. 解 由余弦定理可知 BC2=AB2+AC2-2AB×AC·cos A =4+9-2×2×3×cos60 =13-12x0.5 =13-6 =7 所以BC=√7. (注:cos60=0.5,可以用计算器算) 以上两个小例子简单说明了余弦定理的作用.
sin,cos,tan的一些互换工式拉

文章TAG:余弦定理  什么  余弦定理  
下一篇