本文目录一览

1,三角形的公式

面积公式;(底x高)除以2

三角形的公式

2,解三角形公式正弦余弦

解三角形公式:正弦定理:a/sinA=b/sinB=c/sinC=2R,余弦定理:cosA=(b2+c2-a2)/2bc。正余弦定理指正弦定理和余弦定理,是揭示三角形边角关系的重要定理,直接运用它可解决三角形的问专题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

解三角形公式正弦余弦

3,三角形计算公式

底*高/2
三角形的面积公式:底乘于高除于2 。

三角形计算公式

4,解三角形常用公式

解三角形时,常用的公式包括正弦定理、余弦定理和正切定理,它们是解决三角形边长和角度问题的基本工具,具体公式如下:正弦定理:在任意三角形 ABC 中,设三边分别为 a、b、c,对应的角分别为 A、B、C,则有 sinA/a = sinB/b = sinC/c。余弦定理:在任意三角形 ABC 中,设三边分别为 a、b、c,对应的角分别为 A、B、C,则有 c2 = a2 + b2 - 2ab cosC 等式成立,另外两个角的余弦定理类似。正切定理:在任意三角形 ABC 中,设三边分别为 a、b、c,对应的角分别为 A、B、C,则有 tanA = (2r)/(b+c-a) 等式成立,其中 r 为三角形的内切圆半径。这些公式可以互相转化和综合运用,以求得三角形的各种未知量。在实际应用中,需要根据具体问题选择合适的公式,并注意精度误差和解的唯一性等问题。

5,三角形的计算公式有哪些

定理:在直角三角形中,30°角所对的直角边等于斜边的一半。 斜边长=40cm.
直角三角形定理:在直角三角形中,如果一个锐角是30度,那么它所对的直角边是斜边的一半。 所以,斜边=20*2=60 cm

6,解三角形公式

S=(1/2)ah=(1/2)absinC=abc/(4R)=(1/2)(a+b+c)ra/sinA=b/sinB=c/sinC=2R两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-sinBcosA ? cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) ? cot(A-B) = (cotAcotB+1)/(cotB-cotA)倍角公式 tan2A = 2tanA/[1-(tanA)^2] cos2a = (cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2A = 2sinA*cosA三倍角公式sin3a = 3sina-4(sina)^3cos3a = 4(cosa)^3-3cosatan3a = tana*tan(π/3+a)*tan(π/3-a) 半角公式 sin(A/2) = √((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2) = √((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2) = √((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2) = √((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) ? tan(A/2) = (1-cosA)/sinA=sinA/(1+cosA)和差化积 sin(a)+sin(b) = 2sin((a+b)/2)cos((a-b)/2) sin(a)-sin(b) = 2cos((a+b)/2)sin((a-b)/2) cos(a)+cos(b) = 2cos((a+b)/2)cos((a-b)/2) cos(a)-cos(b) = -2sin((a+b)/2)sin((a-b)/2)tanA+tanB=sin(A+B)/cosAcosB积化和差公式sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]诱导公式sin(-a) = -sin(a) cos(-a) = cos(a) sin(pi/2-a) = cos(a) cos(pi/2-a) = sin(a) sin(pi/2+a) = cos(a) cos(pi/2+a) = -sin(a) sin(pi-a) = sin(a) cos(pi-a) = -cos(a) sin(pi+a) = -sin(a) cos(pi+a) = -cos(a) tgA=tanA = sinA/cosA万能公式sin(a) = (2tan(a/2))/(1+tan^2(a/2)) cos(a) = (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a) = (2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a) = sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a) = sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = (sin(a/2)+cos(a/2))^2 1-sin(a) = (sin(a/2)-cos(a/2))^2其他非重点三角函数csc(a) = 1/sin(a) sec(a) = 1/cos(a)双曲函数sinh(a) = (e^a-e^(-a))/2 cosh(a) = (e^a+e^(-a))/2 tgh(a) = sinh(a)/cosh(a)公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z)

7,解直角三角形公式

对比斜,斜比队,对比另,另比对
设角C=90°SinA=AC/ABCosA=BC/AB tanA=AC/BC cotA=BC/AC
sinA=对边/斜边 cosA=斜边/对边 tanA=邻边 斜边

8,解三角形分别用什么公式

SAS:例如知道a边b边和C角那么c边求法为c^2=a^2+b^2-2ab*cosC如此类推....总之就是用余弦定理和正弦定理去求!余弦定理:a^2=b^2+c^2-2bc*cosA b^2=c^2+a^2-2ac*cosB c^2=a^2+b^2-2ab*cosC正弦定理:A/sina=B/sinb=C/sinc=2R(A B C为角a b c所对的三边,R为三角形外切圆半径)
直角三角形:最长边的平方等于两直角边的平方和还可以用sin tan cos 来求.sin 等于你角对边分之斜边tan等于角的对边比邻边cos等于邻边比斜边如果看不懂可以在网页上查.
二、 三角形 分类:⑴按边分; ⑵按角分 1.定义(包括内、外角) 2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中, 3.三角形的主要线段 讨论:①定义②××线的交点—三角形的×心③性质 ① 高线②中线③角平分线④中垂线⑤中位线 ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形 4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质 5.全等三角形 ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS) ⑵特殊三角形全等的判定:①一般方法②专用方法 6.三角形的面积 ⑴一般计算公式⑵性质:等底等高的三角形面积相等。 7.重要辅助线 ⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线 8.证明方法 ⑴直接证法:综合法、分析法 ⑵间接证法—反证法:①反设②归谬③结论 ⑶证线段相等、角相等常通过证三角形全等 ⑷证线段倍分关系:加倍法、折半法 ⑸证线段和差关系:延结法、截余法 ⑹证面积关系:将面积表示出来
中心:正三角形的重心、内心、外心、垂心 重心:中线交点 内心:角平分线交点 外心:垂直平分线交点 垂心:高的交点 以下a,b,c等表边ab,bc等表相应向量 重心o:oa+ob+oc=0 po=(pa+pb+pc)/3 内心o:aoa+bob+coc=0 垂心o:oa.ob=ob.oc=oc.oa 外心o:|oa|=|ob|=|oc|
1边角关系;三角函数正弦定理:sinA=b/sinB=c/sinC=2R余弦定理:a平方=b平方+c平方-2ac^cosA边边关系;勾股定理
你要解什么啊 这该是证明题用的公式吧角边角,边角边,角角边,边边边 能证明两个三角形全等;角角,边边角 能证明两个三角形相似全等三角形证明:1.三组对应边分别相等(SSS) 2.有一个角和夹这个角的两条夹边对应相等的两个三角形全等(SAS) 3.有两个角和这两个角的夹边对应相等的两个三角形全等(ASA) 4.有两角和其中一个角的对边对应相等的两个三角形全等(AAS)

9,三角形的高计算公式

三角形的高的计算公式是:h=2×S△÷a(S△是三角形的面积,a是三角形的底)解题思路:三角形高的计算公式是在三角形的面积公式的基础上反推出来的。三角形的面积计算公式:S△=1/2ah (a是三角形的底,h是底所对应的高)所以三角形的高的计算公式是:h=2×S△÷a拓展资料1、 (面积=底×高÷2。其中,a是三角形的底,h是底所对应的高)注释:三边均可为底,应理解为:三边与之对应的高的积的一半是三角形的面积。这是面积法求线段长度的基础。2、三角形是由同一平面内不在同一直线上的三条线段首尾顺次连接所组成的封闭图形,在数学、建筑学有应用。3、三角形的高是指从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段叫做三角形的高(altitude)。
三角形的高的计算公式是:h=2×S△÷a(S△是三角形的面积,a是三角形的底)解题思路:三角形高的计算公式是在三角形的面积公式的基础上反推出来的。三角形的面积计算公式:S△=1/2ah (a是三角形的底,h是底所对应的高)所以三角形的高的计算公式是:h=2×S△÷a
只能根据其他公式反推,公式有勾股定理,面积公式等。勾股定理:若已知斜边和一直角边,可以求另一直角边,也就是高。如下图,是已知a,x,求△ABC的高。面积公式:已知RT△ABC的面积S,直角边c,高h=2S/c.非直角三角形的高:锐角三角形的高都在三角形内部,钝角三角形的1个高位于三角形外部。计算方法同上拓展资料勾股定理:直角三角形中,斜边的平方等于两直角边的平方和。三角形的高:过三角形一个顶点,做对边的垂线,这条垂线段叫做三角形的高。
三角形的高计算公式:S=1/2底×高 用a表示底,h表示高 h=2S/a三角形面积公式是指使用算式计算出三角形的面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形,符号为△。常见的三角形按边分有等腰三角形(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)、不等腰三角形;按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
假如你只知道三角形三边长度不知道面积,设三边长a,b,c,高h(高是底边a的高)下面两种第一,海伦公式,先设p=(a+b+c)/2 S面积=根号下p(p-a)(p-b)(p-c),求得面积后h高=2*S/a第二种: 设 p=a^2-b^2+c^2(a的平方减去b的平方加c的平方)高h=根号下(2ac-p)(2ac+p) /4a的平方 根号下4a的平方即等于2a这个第一种海伦定理应该是不学的但是可能会了解到(信息书上看到过当然是不学的),第二种纯属个人扯淡,不过第二种是可以的,初二上半学期,有时候闲着没事干第二种方法就弄出来了,有兴趣搜到我这几句话的可以自己去探索新的方式,因为我探索的是很简单的,谁说没有比海伦公式更简单的了?再加上那个因为一些公式看起来很规律很简便所以才被适用,但那也只是看起来,自己去探索更简单才快乐

10,三角形的边与角的公式

解三角形 解直角三角形(斜三角形特殊情况): 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。 勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,5。他们分别是3,4和5的倍数。 常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等. 解斜三角形: 在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有 (1)正弦定理 a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况。 (3)余弦定理变形公式 cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件 定理应用 一般解法 一边和两角 (如a、B、C) 正弦定理 由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时 有一解。 两边和夹角 (如a、b、c) 余弦定理 由余弦定理求第三边c,由正弦定理求出小边所对的角,再 由A+B+C=180˙求出另一角,在有解时有一解。 三边 (如a、b、c) 余弦定理 由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解。 两边和其中一边的对角 (如a、b、A) 正弦定理 由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正 弦定理求出C边,可有两解、一解或无解。 勾股定理(毕达哥拉斯定理) 内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。 几何语言:若△ABC满足∠ABC=90°,则AB2+BC2=AC2 勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形 几何语言:若△ABC满足,则∠ABC=90°。 [3]射影定理(欧几里得定理) 内容:在任何一个直角三角形中,作出斜边上的高,则斜边上的高的平方等于高所在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积。 几何语言:若△ABC满足∠ABC=90°,作BD⊥AC,则BD2=AD×DC 射影定理的拓展:若△ABC满足∠ABC=90°,作BD⊥AC, (1)AB2=BD·BC (2)AC2;=CD·BC (3)ABXAC=BCXAD 正弦定理 内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与三边边长和的乘积之比 几何语言:在△ABC中,sinA/a=sinB/b=sinC/c=2S三角形/abc 结合三角形面积公式,可以变形为a/sinA=b/sinB=c/sinC=2R(R是外接圆半径) 余弦定理 内容:在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦 几何语言:在△ABC中,a2=b2+c2-2bc×cosA 此定理可以变形为:cosA=(b2+c2-a2)÷2bc

文章TAG:解三角形  三角  三角形  公式  解三角形公式  
下一篇