本文目录一览

1,分式的基本性质是什么

含有未知数的式子。望采纳

分式的基本性质是什么

2,数学中的分式的性质是什么

分式的性质:分式的分母和分子同除以或乘以一个不为零的式子,分式的值不变。 和分数有的区别: 分式:表示分子,分母有未知数。如果分子,分母都是常数,那这个分式就是分数了。

数学中的分式的性质是什么

3,分式的基本性质

(12000-W×60×2)÷(W+10)=(12000-120W)/(W+10)(分钟)或:(12000-W×60×2)÷(W+10)÷60=(200-2W)/(W+10)(小时)

分式的基本性质

4,分式的性质

分式上下同时乘以或除以一个不为零的整式,分式的值不变。注意分式中分母不能为零。
1.分式的基本性质:分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。字母表示为a/b=ac/bc=(a/c)/(b/c)2.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.3.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去.注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式.4.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.5.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分.6.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子.注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.注:(1)约分和通分的依据都是分式的基本性质.(2)分式的约分和通分都是互逆运算过程.

5,分式的性质是什么

分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。
第一节 分式的基本概念 I.定义:整式A除以整式B,可以表示成A/B的形式。如果除式B中含有字母,那么称为分式(fraction)。 注:A÷B=A×1/B =A×B-1= A?B-1。有时把 写成负指数即A?B-1,只是在形式上有所不同,而本质里没有区别. II.组成:在分式 中A称为分式的分子,B称为分式的分母。 III.意义:对于任意一个分式,分母都不能为0,否则分式无意义。 IV.分式值为0的条件:在分母不等于0的前提下,分子等于0,则分数值为0。 注:分式的概念包括3个方面:①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。 第二节 分式的基本性质和变形应用 V.分式的基本性质:分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。 VI.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. VII.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去. 注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式. VIII.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式. IX.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分. X.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子. 注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积. 注:(1)约分和通分的依据都是分式的基本性质.(2)分式的约分和通分都是互逆运算过程. 第三节 分式的四则运算 XI.同分母分式加减法则:分母不变,将分子相加减. XII.异分母分式加减法则:通分后,再按照同分母分式的加减法法则计算. XIII.分式的乘法法则:用分子的积作分子,分母的积作分母. XIV.分式的除法法则:把除式变为其倒数再与被除式相乘. 第四节 分式方程 XV.分式方程的意义:分母中含有未知数的方程叫做分式方程. XVI.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

6,分式的基本性质

分子,分母及分式 , 任意两个的符号
[编辑本段]第一节 分式的基本概念 i.定义:整式a除以整式b,可以表示成a/b的形式。如果除式b中含有字母且b中的字母不能表现为a/1=a,那么称为分式(fraction)。 注:a÷b=a×1/b. ii.组成:在分式 中a称为分式的分子,b称为分式的分母。 iii.意义:对于任意一个分式,分母都不能为0,否则分式无意义。 iv.分式值为0的条件:在分母不等于0的前提下,分子等于0,则分数值为0。 注:分式的概念包括3个方面:①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。 [编辑本段]第二节 分式的基本性质和变形应用 v.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。 vi.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. vii.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去. 注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式. viii.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式. ix.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分. x.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子. 注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积. 注:(1)约分和通分的依据都是分式的基本性质.(2)分式的约分和通分都是互逆运算过程. [编辑本段]第三节 分式的四则运算 xi.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减. xii.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算. xiii.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. xiv.分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘. [编辑本段]第四节 分式方程 xvi.分式方程的意义:分母中含有未知数的方程叫做分式方程. xvii.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

7,分式的基本性质

1.1/x+1/y=(x+y)/xy=(x+y)/(x-y) 2.1/x+1/y=(x+y)/xy=5,x+y=5xy 2x-3xy+2y=2(x+y)-3xy=10xy-3xy=7xy x+2xy+y=(x+y)+2xy=5xy+2xy=7xy (2x-3xy+2y)/(x+2xy+y)=7xy/7xy=1
I.定义:整式A除以整式B,可以表示成A/B的形式。如果除式B中含有字母且B中的字母不能表现为A/1=a,那么称为分式(fraction)。 注:A÷B=A×1/B. II.组成:在分式 中A称为分式的分子,B称为分式的分母。 III.意义:对于任意一个分式,分母都不能为0,否则分式无意义。 IV.分式值为0的条件:在分母不等于0的前提下,分子等于0,则分数值为0。 注:分式的概念包括3个方面:①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。 [编辑本段]第二节 分式的基本性质和变形应用 V.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。 VI.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. VII.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去. 注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式. VIII.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式. IX.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分. X.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子. 注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积. 注:(1)约分和通分的依据都是分式的基本性质.(2)分式的约分和通分都是互逆运算过程. [编辑本段]第三节 分式的四则运算 XI.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减. XII.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算. XIII.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. XIV.分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘. [编辑本段]第四节 分式方程 XVI.分式方程的意义:分母中含有未知数的方程叫做分式方程. XVII.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

文章TAG:分式  性质  基本  是什么  分式的性质  
下一篇