本文目录一览

1,什么叫条件期望

条件期望,又称条件数学期望.为了方便起见,我们讨论两个随机变量ξ 与η 的场合,假定它们具有密度函数p(x,y) ,并以p(y∣x) 记已知ξ = x 的条件下,η 的条件密度函数,以p1(x) 记 ξ 的密度函数.定义 在ξ = x 的条...

什么叫条件期望

2,条件期望怎么求

条件期望,又称条件数学期望。为了方便起见,我们讨论两个随机变量X与Y的场合,假定它们具有密度函数f(x,y) ,并以g(y|x) 记已知X=x的条件下Y的条件密度函数,以h(x) 记X的边缘密度函数。定义在X=x的条件下, Y的条件期望定义为:E(Y|X=x)=∫y*g(y|x)dy [1] 。应用编辑条件数学期望在近代概率论中有着基本重要的作用 [2] ,在实际问题中也有很大用处。在两个互有影响的随机变量中,如果已知其中一个随机变量的取值=y,要据此去估计或预测另一个随机变量的取值,这样的问题在实际应用中经常会碰到。人们称它为“预测问题”。由上述讨论可知,条件数学期望E( )是在已知(=y)发生的条件下,对 的一个颇为“合理”的预测。一般认为,人的身高和脚印长可当作一个二维正态分布变量来处理。把它画在平面的直角坐标系中就是一条直线,它在一定程度上描写了身高依赖于脚印的关系,常常称为是回归直线。在一般情形下,由E( x,y) 或可以得到平面上的两条曲线,它们称为是回归曲线或简称为回归。期望的剩余方差编辑还有一点应该指出的是,对于用得最广泛的正态分布来说,可以从例3.27知道,两类回归恰好是一致的。这一事实表明,就正态分布而言,最佳线性估计就是最佳估计。当然,这里“最佳”的意思是指均方差最小这个均方误差常常称为剩余方差。由上式可知,当 与 间的相关系数| |=1时,剩余方差为零。这时, 可以用方差来准确估计,也就是说 与 之间存在着线性关系。于是我们又一次证明了相关系数是随机变量间线性相依程度的反映。

条件期望怎么求

3,数学基础条件期望

最近在上一门stochastic calculus的课程,其中第一次碰到了概率空间上条件期望[ conditional expectation, wikipedia ]的概念,刚开始觉得有些难以理解和接受,仔细想了想有了一些心得体会,在这里分享一下。 首先是条件期望的定义: 这里的随机变量X是一个从概率空间\Omega到欧式空间R^n的可测函数,它的条件期望E[X|HH](我用HH表示花H)首先是一个HH-可测的函数,另外满足在任何H上的积分等于X在H上的积分。由这两个条件限制得到的条件期望是存在唯一的(在几乎处处相等的意义下),但是这么定义的条件期望是什么呢? 若HH= 也即HH是\Omega上最小的Borel代数,只有两个元素,空集和全空间。E[X|HH]满足两个条件,一是在HH上可测,二是在H上的积分等于X在H上的积分。首先看第一个,在HH= 若HH= 此时HH除了空集、全空间之外还有A和A的补集。那么首先HH上的可测函数都可以写成a*1_A+b*1_B,即为A、B上特征函数的线性组合,证明方法与上面类似,首先可证像集中最多有两个点,同样用反证法。条件二考查在HH中可测集上的积分,即H可取A、B与全空间,而在A和B上,E[X|HH]分别是常值,取H=A,可得a*P(A)=\int_A X dP,即a=(\int_A X dP)/P(A),即为X在A上的积分除以A的概率,同样地可得b有相似的形式。 若HH是有限集,或者更一般地,存在有限个可测集H1,...,Hn使得它们互不相交,且并为全空间,且每个Hi都没有比它更小的可测集。 这时,HH上的可测函数都可以写为a1*1_H1+...+an*1_Hn。首先HH上的所有简单函数都有这样的形式,变化的就是这些系数ai,于是它们组成了一个有限维空间,而可测函数可以由简单函数点态逼近,而有限维空间的闭还是它自己,故证毕。在由条件二,分别令H=Hi,可以得到ai为X在Hi上的积分除以Hi的概率,即ai=(\int_Hi X dP)/P(Hi),与我们一般所熟知的离散情况具有类似的形式。 当然上面所讨论的HH都具有某种“有限”性,对于一般的HH,表达形式更为复杂,甚至写不出来,但是希望上面的讨论可以帮助你有一定的感觉,更好地理解它。

数学基础条件期望


文章TAG:条件  条件期望  期望  什么  条件期望  
下一篇