八年级上册数学试卷,八年级上册第一章数学试卷 帮忙出一份 要答案
来源:整理 编辑:去留学呀 2023-05-11 00:57:38
本文目录一览
1,八年级上册第一章数学试卷 帮忙出一份 要答案
第一章:勾股定理 (满分110分,时间100分) 题号 一 二 三 附加题 总分 分数 一、填空题(每空3分,共30分) 1.如图,64、400分别为所在正方形的面积,则图中 A 400 字母A所代表的正方形面积是 . 64 2.如图,直角三角形中未知边的长度 = . 3.满足 的三个正整数,称为 .5 x 4.三角形的三边长分别是15,36,39,这个三角形是 三角形.12 5.已知甲乙两人从同一地点出发,甲往东走了4km,乙往南走了3km,这时甲乙 俩人相距 . 6.如图,直角三角形的两直角边长分别是6cm和8cm, 则带阴影的正方形面积是 . 7.在ΔABC中,若AB2 + BC2 = AC2,则∠A + ∠C= °. 8.直角三角形的三边长为连续偶数,则其周长为 .A 9.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,则AC= . 10.等腰△ABC中,AB=AC=17cm,BC=16cm, 则BC边上的高AD=_______. 二、选择题(每题3分,共30分) 1.一个直角三角形,两直角边长分别为3和4,下列说法正确的是( ) A.斜边长为25; B.三角形的周长为25; C.斜边长为5; D.三角形面积为20. 2.小丰妈妈买了一部29英寸(74cm)电视机,下列对29英寸的说法中正确的是( ) A.小丰认为指的是屏幕的长度; B.小丰的妈妈认为指的是屏幕的宽度; C.小丰的爸爸认为指的是屏幕的周长; D.售货员认为指的是屏幕对角线的长度. 3.下列各组数中不能作为直角三角形的三边长的是( ) A.1.5,2,3; B.7,24,25; C.6,8,10; D.9,12,15. 4.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( ) A.钝角三角形; B.锐角三角形; C.直角三角形; D.等腰三角形. 5.适合下列条件的△ABC中,直角三角形的个数为 ( ) ① ② ∠A=450;③∠A=320,∠B=580;④ ⑤ B A.2个; B.3个; C.4个; D.5个. 6、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,A 要爬行的最短路程( 取3)是 ( ) A.20cm; B.10cm; C.14cm; D.无法确定. 7.下列结论错误的是( ) A、三个角度之比为1∶2∶3的三角形是直角三角形; B、三条边长之比为3∶4∶5的三角形是直角三角形; C、三条边长之比为8∶16∶17的三角形是直角三角形; D、三个角度之比为1∶1∶2的三角形是直角三角形. 8.斜边为 ,一条直角边长为 的直角三角形的面积是 ( ) (A) 60 (B) 30 (C) 90 (D) 120 9.已知一直角三角形的木版,三边的平方和为1800cm2,则斜边长为( ) (A) (B) (C) (D) 10.男孩戴维是城里的飞盘冠军,戈里是城里最可恶的踩高跷的人,两人约定一比高低.戴维 直立肩高1米,他投飞盘很有力,但需在13米内才有威力;戈里踩高跷时鼻子离地13米, 他的鼻子是他惟一的弱点.戴维需离戈里( )远时才能击中对方的鼻子而获胜. A.7米 B.8米 C.6米 D.5米 三、解答题(每小题8分,共40分) 1、已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm, 且∠A=90°,求四边形ABCD的面积. 2、 如图,一根旗杆在离地面9 m处断裂,旗杆顶部落在离旗杆底部12 m处,旗杆在折断之前 有多高? 3.如图,从电线杆离地面6 m处向地面拉一条长10 m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远? 4.在某一平地上,有一棵树高8米的大树,一棵树高3米的小树,两树之间相距12米.今一只 小鸟在其中一棵树的树梢上,要飞到另一棵树的树梢上,问它飞行的最短距离是多少? (画出草图然后解答) 5.甲乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时的速度向西行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲乙二人相距多远? 附加题:印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”: “平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅?” 请用学过的数学知识回答这个问题.(10分)

2,华师大版八年级上册数学期末试卷及答案
八年级数学是中学数学的基础,所以数学期末考试要倍加重视和做试题。以下是我为你整理的华师大版八年级上册数学期末试卷,希望对大家有帮助! 华师大版八年级上册数学期末试卷 一、选择题 1,4的平方根是( ) A.2 B.4 C.±2 D.±4 2,下列运算中,结果正确的是( ) A.a4+a4=a8 B.a3?a2=a5 C.a8÷a2=a4 D.(-2a2)3=-6a6 3,化简:(a+1)2-(a-1)2=( ) A.2 B.4 C.4a D.2a2+2 4,矩形、菱形、正方形都具有的性质是( ) A.每一条对角线平分一组对角 B.对角线相等 C.对角线互相平分 D.对角线互相垂直 5,如图1所示的图形中,中心对称图形是( ) 图1 6,如图2右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是( ) 图2 7,如图3,已知等腰梯形ABCD中,AD∥BC,∠A=110°,则∠C=( ) A.90° B.80° C.70° D.60° 8,如图4,在平面四边形ABCD中,CE⊥AB,E为垂足.如果∠A=125°,则∠BCE=( ) A.55° B.35° C.25° D. 30° 9,如图5所示,将长为20cm,宽为2cm的长方形白纸条,折成图6所示的图形并在其一面着色,则着色部分的面积为( ) A.34cm2 B.36cm2 C.38cm2 D.40cm2 10,(芜湖市)如图7,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为( ) A. cm B.4cm C. cm D.3cm 二、填空题 11,化简:5a-2a= . 12,9的算术平方根是_______. 13,在数轴上与表示 的点的距离最近的整数点所表示的数是 . 14,如图8,若□ABCD与□EBCF关于BC所在直线对称,∠ABE=90°,则∠F =___° 15,如图9,正方形ABCD的边长为4,MN∥BC分别交AB,CD于点M,N,在MN上任取 两点P,Q,那么图中阴影部分的面积是 . 16,如图10,菱形ABCD的对角线的长分别为3和8,P是对角线AC上的任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F.则阴影部分的面积是_______. 17,如图11,将矩形纸片ABCD的一角沿EF折叠,使点C落在矩形ABCD的内部C′处, 若∠EFC=35°,则∠DEC′= 度. 18,请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果 . 19,为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文x,y,z对应密文2x+3y,3x+4y,3z.例如:明文1,2,3对应密文 8,11,9.当接收方收到密文12,17,27时,则解密得到的明文为 . 20,如图12,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那么此三角板向右平移的距离是 cm. 三、解答题 21,计算: . 22,化简:a(a-2b)-(a-b)2. 23,先化简,再求值. (a-2b)(a+2b)+ab3÷(-ab),其中a= ,b=-1. 24,如图13是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图13中黑色部分是一个中心对称图形. 25,如图14,在一个10×10的正方形DEFG网格中有一个△ABC. (1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1. (2)在网格中画出△ABC绕C点逆时针方向旋转90°得到的△A2B2C. (3)若以EF所在的直线为x轴,ED所在的直线为y轴建立直角坐标系,写出A1、A2两点的坐标. 26,给出三个多项式: x2+x-1, x2+3x+1, x2-x,请你选择其中两个进行加法运算,并把结果因式分解. 27,现有一张矩形纸片ABCD(如图15),其中AB=4cm,BC=6cm,点E是BC的中点.实施操作:将纸片沿直线AE折叠,使点B落在梯形AECD内,记为点B′. (1)请用尺规,在图中作出△AEB′.(保留作图痕迹); (2)试求B′、C两点之间的距离. 28, 2008年,举世瞩目的第29届奥运盛会将在北京举行.奥运五环,环环相扣,象征着全世界人民的大团结.五环图中五个圆环均相等,其中上排三个、下排两个,且上排的三个圆心在同一直线上;五环图是一个轴对称图形. (1)请用尺规作图,在图16中补全奥运五环图,心怀奥运.(不写作法,保留作图痕迹) (2)五环图中五个圆心围一个等腰梯形.如图17,在等腰梯形ABCD中,AD∥BC.假设BC=4,AD=8,∠A=45°,求梯形的面积. 29,把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H (如图18).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想. 30,如图19,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE. (1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由. (2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.试说明AH⊥ED 的理由,并求AG的长. 华师大版八年级上册数学期末试卷参考答案 一、1,C;2,B;3,C;4,C;5,B;6,B;7,C;8,B;9,B;10,A. 二、11,3a;12,3;13,2;14,45;15,8;16,6;17,70; 18,答案不唯一.如,2a2+4a+2=2(a+1)2,mx2-4mxy+4my2=m(x-2y)2.等等;19,3、2、9;20,6-2 . 三、21,原式=2-3+1=0. 22,原式=a2-2ab-(a2-2ab+b2)=a2-2ab-a2+2ab-b2=-b2. 23,原式=a2-4b2+(-b2)=a2-5b2,当a= ,b=-1时,原式=( )2-5(-1)2=-3. 24,如图: 25,(1)和(2)如图:(3)A1(8,2)、A2(4,9). 26,答案不惟一.如,选择多项式: x2+x-1, x2+3x+1.作加法运算:( x2+x-1)+( x2+3x+1)=x2+4x=x(x+4). 27,(1)可以从B、B′关于AE对称来作,如图. (2)因为B、B′关于AE对称,所以BB′⊥AE,设垂足为F,因为AB=4,BC=6,E是BC的中点, 所以BE=3,AE=5,BF= ,所以BB′= .因为B′E=BE=CE,所以∠BB′C=90°. 所以由勾股定理,得B′C= = .所以B′、C两点之间的距离为 cm. 28,(1)如图中的虚线圆即为所作. (2)过点B作BE⊥AD于E.因为BC=4,AD=8,所以由等腰梯形的轴对称性可知 AE= (AD-BC)=2.在Rt△AEB中,因为∠A=45°,所以∠ABE=45°, 即BE=AE=2.所以梯形的面积= ( BC+AD)×BE= (4+8)×2=12. 29,HG=HB.连结GB.因为四边形ABCD,AEFG都是正方形,所以∠ABC=∠AGF=90°, 由题意知AB=AG.所以∠AGB=∠ABG,所以∠HGB=∠HBG.所以HG=HB. 30,(1)在正方形ABCD中,因为AD=DC=2,所以AE=CF=1,又因为∠BAD=∠DCF=90°, 所以△ADE与△CDF的形状和大小都相同,所以把△ADE绕点D旋转一定的角度时能与△CDF重合.(2)由(1)可知∠CDF=∠ADE,因为∠ADE+∠EDC=90°,所以∠CDF+∠EDC=90°, 所以∠EDF=90°,又由已知得AH∥DF,∠EGH=∠EDF=90°,所以AH⊥ED.因为AE=1,AD=2,所以由勾股定理,得ED= = = ,所以 AE?AD= ED?AG, 即 ×1×2= × ×AG,所以AG= .

3,八年级数学上册期末试卷及答案
关键的八年级数学期末考试就临近了,只要努力过、奋斗过,就不会后悔。下面是我为大家精心整理的八年级数学上册期末试卷,仅供参考。 八年级数学上册期末试题 一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分. 1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( ) A. B. C. D. 2.下列运算正确的是( ) A.a+a=a2 B.a3?a2=a5 C.2 =2 D.a6÷a3=a2 3. 的平方根是( ) A.2 B.±2 C. D.± 4.用科学记数法表示﹣0.00059为( ) A.﹣59×10﹣5 B.﹣0.59×10﹣4 C.﹣5.9×10﹣4 D.﹣590×10﹣7 5.使分式 有意义的x的取值范围是( ) A.x≤3 B.x≥3 C.x≠3 D.x=3 6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( ) A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC 7.若 有意义,则 的值是( ) A. B.2 C. D.7 8.已知a﹣b=1且ab=2,则式子a+b的值是( ) A.3 B.± C.±3 D.±4 9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是( ) A.a B.2a C.3a D.4a 10.已知xy<0,化简二次根式y 的正确结果为( ) A. B. C. D. 11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为( ) A. B. C.2 D. 12.若关于x的分式方程 无解,则常数m的值为( ) A.1 B.2 C.﹣1 D.﹣2 二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分. 13.将xy﹣x+y﹣1因式分解,其结果是 . 14.腰长为5,一条高为3的等腰三角形的底边长为 . 15.若x2﹣4x+4+ =0,则xy的值等于 . 16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C= 度. 三、解答题:本大题共6小题,共64分。解答时要写出必要的文字说明、证明过程或演算步骤。 17.如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2. 18.先化简,再求值: (1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2. (2)( )÷ ,其中a= . 19.列方程,解应用题. 某中学在莒县服装厂订做一批棉学生服,甲车间单独生产3天完成总量的 ,这时天气预报近期要来寒流,需要加快制作速度,这时增加了乙车间,两个车间又共同生产两天,完成了全部订单,如果乙车间单独制作这批棉学生服需要几天? 20.△ABC三边的长分别为a、b、c,且满足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,试判定△ABC的形状,并证明你的结论. 21.如图,四边形ABCD是平行四边形,并且∠BCD=120°,CB=CE,CD=CF. (1)求证:AE=AF; (2)求∠EAF的度数. 22.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2,善于思考的小明进行了以下探索: 设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m . a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b 的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当a、b、m、n均为正整数时,若a+b =(m+n )2,用含m、n的式子分别表示a,b,得a= ,b= . (2)利用所探索的结论,用完全平方式表示出: = . (3)请化简: . 八年级数学上册期末试卷参考答案 一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分. 1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( ) A. B. C. D. 【考点】轴对称图形. 【分析】根据轴对称图形的概念求解. 【解答】解:A、不是轴对称图形,故本选项错误; B、不是轴对称图形,故本选项错误; C、不是轴对称图形,故本选项错误; D、是轴对称图形,故本选项正确. 故选D. 【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 2.下列运算正确的是( ) A.a+a=a2 B.a3?a2=a5 C.2 =2 D.a6÷a3=a2 【考点】同底数幂的除法;合并同类项;同底数幂的乘法;二次根式的加减法. 【分析】根据合并同类项、同底数幂的乘法、除法,即可解答. 【解答】解:A、a+a=2a,故错误; B、a3?a2=a5,正确; C、 ,故错误; D、a6÷a3=a3,故错误; 故选:B. 【点评】本题考查了合并同类项、同底数幂的乘法、除法,解决本题的关键是熟记合并同类项、同底数幂的乘法、除法. 3. 的平方根是( ) A.2 B.±2 C. D.± 【考点】算术平方根;平方根. 【专题】常规题型. 【分析】先化简 ,然后再根据平方根的定义求解即可. 【解答】解:∵ =2, ∴ 的平方根是± . 故选D. 【点评】本题考查了平方根的定义以及算术平方根,先把 正确化简是解题的关键,本题比较容易出错. 4.用科学记数法表示﹣0.00059为( ) A.﹣59×10﹣5 B.﹣0.59×10﹣4 C.﹣5.9×10﹣4 D.﹣590×10﹣7 【考点】科学记数法—表示较小的数. 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:﹣0.00059=﹣5.9×10﹣4, 故选:C. 【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 5.使分式 有意义的x的取值范围是( ) A.x≤3 B.x≥3 C.x≠3 D.x=3 【考点】分式有意义的条件. 【分析】分式有意义的条件是分母不等于零,从而得到x﹣3≠0. 【解答】解:∵分式 有意义, ∴x﹣3≠0. 解得:x≠3. 故选:C. 【点评】本题主要考查的是分式有意义的条件,掌握分式有意义时,分式的分母不为零是解题的关键. 6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( ) A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC 【考点】平行四边形的判定. 【分析】根据平行四边形判定定理进行判断. 【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意; B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意; C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意; D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意; 故选D. 【点评】本题考查了平行四边形的判定. (1)两组对边分别平行的四边形是平行四边形. (2)两组对边分别相等的四边形是平行四边形. (3)一组对边平行且相等的四边形是平行四边形. (4)两组对角分别相等的四边形是平行四边形. (5)对角线互相平分的四边形是平行四边形. 7.若 有意义,则 的值是( ) A. B.2 C. D.7 【考点】二次根式有意义的条件. 【分析】根据二次根式中的被开方数必须是非负数求出x的值,根据算术平方根的概念计算即可. 【解答】解:由题意得,x≥0,﹣x≥0, ∴x=0, 则 =2, 故选:B. 【点评】本题考查的是二次根式有意义的条件以及算术平方根的概念,掌握二次根式中的被开方数必须是非负数是解题的关键. 8.已知a﹣b=1且ab=2,则式子a+b的值是( ) A.3 B.± C.±3 D.±4 【考点】完全平方公式. 【专题】计算题;整式. 【分析】把a﹣b=1两边平方,利用完全平方公式化简,将ab=2代入求出a2+b2的值,再利用完全平方公式求出所求式子的值即可. 【解答】解:把a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1, 将ab=2代入得:a2+b2=5, ∴(a+b)2=a2+b2+2ab=5+4=9, 则a+b=±3, 故选C 【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是( ) A.a B.2a C.3a D.4a 【考点】平行四边形的性质. 【分析】由?ABCD的周长为4a,可得AD+CD=2a,OA=OC,又由OE⊥AC,根据线段垂直平分线的性质,可证得AE=CE,继而求得△DCE的周长=AD+CD. 【解答】解:∵?ABCD的周长为4a, ∴AD+CD=2a,OA=OC, ∵OE⊥AC, ∴AE=CE, ∴△DCE的周长为:CD+DE+CE=CD+DE+AE=CD+AD=2a. 故选:B. 【点评】此题考查了平行四边形的性质以及线段垂直平分线的性质.注意得到△DCE的周长=AD+CD是关键. 10.已知xy<0,化简二次根式y 的正确结果为( ) A. B. C. D. 【考点】二次根式的性质与化简. 【分析】先求出x、y的范围,再根据二次根式的性质化简即可. 【解答】解:∵要使 有意义,必须 ≥0, 解得:x≥0, ∵xy<0, ∴y<0, ∴y =y? =﹣ , 故选A. 【点评】本题考查了二次根式的性质的应用,能正确根据二次根式的性质进行化简是解此题的关键. 11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为( ) A. B. C.2 D. 【考点】翻折变换(折叠问题). 【分析】DE是边AB的垂直平分线,则AE=BE,设AE=x,在直角△BCE中利用勾股定理即可列方程求得x的值,进而求得EC的长. 【解答】解:∵DE垂直平分AB, ∴AE=BE, 设AE=x,则BE=x,EC=4﹣x. 在直角△BCE中,BE2=EC2+BC2,则x2=(4﹣x)2+9, 解得:x= , 则EC=AC﹣AE=4﹣ = . 故选B. 【点评】本题考查了图形的折叠的性质以及勾股定理,正确理解DE是AB的垂直平分线是本题的关键. 12.若关于x的分式方程 无解,则常数m的值为( ) A.1 B.2 C.﹣1 D.﹣2 【考点】分式方程的解;解一元一次方程. 【专题】计算题;转化思想;一次方程(组)及应用;分式方程及应用. 【分析】将分式方程去分母化为整式方程,由分式方程无解得到x=3,代入整式方程可得m的值. 【解答】解:将方程两边都乘以最简公分母(x﹣3),得:1=2(x﹣3)﹣m, ∵当x=3时,原分式方程无解, ∴1=﹣m,即m=﹣1; 故选C. 【点评】本题主要考查分式方程的解,对分式方程无解这一概念的理解是此题关键. 二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分. 13.将xy﹣x+y﹣1因式分解,其结果是 (y﹣1)(x+1) . 【考点】因式分解-分组分解法. 【分析】首先重新分组,进而利用提取公因式法分解因式得出答案. 【解答】解:xy﹣x+y﹣1 =x(y﹣1)+y﹣1 =(y﹣1)(x+1). 故答案为:(y﹣1)(x+1). 【点评】此题主要考查了分组分解法分解因式,正确分组是解题关键. 14.腰长为5,一条高为3的等腰三角形的底边长为 8或 或3 . 【考点】等腰三角形的性质;三角形三边关系. 【分析】根据不同边上的高为3分类讨论,利用勾股定理即可得到本题的答案. 【解答】解:①如图1. 当AB=AC=5,AD=3, 则BD=CD=4, 所以底边长为8; ②如图2. 当AB=AC=5,CD=3时, 则AD=4, 所以BD=1, 则BC= = , 即此时底边长为 ; ③如图3. 当AB=AC=5,CD=3时, 则AD=4, 所以BD=9, 则BC= =3 , 即此时底边长为3 . 故答案为:8或 或3 . 【点评】本题考查了等腰三角形的性质,勾股定理,解题的关键是分三种情况分类讨论. 15.若x2﹣4x+4+ =0,则xy的值等于 6 . 【考点】解二元一次方程组;非负数的性质:偶次方;非负数的性质:算术平方根;配方法的应用. 【专题】计算题;一次方程(组)及应用. 【分析】已知等式变形后,利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出xy的值. 【解答】解:∵x2﹣4x+4+ =(x﹣2)2+ =0, ∴ , 解得: , 则xy=6. 故答案为:6 【点评】此题考查了解二元一次方程组,配方法的应用,以及非负数的性质,熟练掌握运算法则是解本题的关键. 16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C= 180 度. 【考点】勾股定理的逆定理;勾股定理. 【分析】勾股定理的逆定理是判定直角三角形的方法之一. 【解答】解:连接AC,根据勾股定理得AC= =25, ∵AD2+DC2=AC2即72+242=252, ∴根据勾股定理的逆定理,△ADC也是直角三角形,∠D=90°, 故∠A+∠C=∠D+∠B=180°,故填180. 【点评】本题考查了勾股定理和勾股定理的逆定理,两条定理在同一题目考查,是比较好的题目. 三、解答题:本大题共6小题,共64分。解答时要写出必要的文字说明、证明过程或演算步骤。 17.如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2. 【考点】作图-轴对称变换. 【分析】分别利用关于x轴、y轴对称点的坐标性质得出各对应点的位置,进而得出答案. 【解答】解:△ABC各顶点的坐标以及△ABC关于x轴对称的△A1B1C1的各顶点坐标: A1(﹣3,﹣2),B1(﹣4,3),C1(﹣1,1), 如图所示:△A2B2C2,即为所求. 【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键. 18.先化简,再求值: (1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2. (2)( )÷ ,其中a= . 【考点】分式的化简求值;整式的混合运算—化简求值. 【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x、y的值代入进行计算即可; (2)先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可. 【解答】解:(1)原式=5x2﹣x2+y2﹣4x2+4xy﹣y2 =4xy, 当x=1,y=2时,原式=4×1×2=8; (2)原式= ? = ? =a﹣1, 当a= 时,原式= ﹣1. 【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 19.列方程,解应用题. 某中学在莒县服装厂订做一批棉学生服,甲车间单独生产3天完成总量的 ,这时天气预报近期要来寒流,需要加快制作速度,这时增加了乙车间,两个车间又共同生产两天,完成了全部订单,如果乙车间单独制作这批棉学生服需要几天? 【考点】分式方程的应用. 【分析】设乙车间单独制作这批棉学生服需要x天,则每天能制作总量的 ;甲车间单独生产3天完成总量的 ,则每天能制作总量的 ,根据总的工作量为1列出方程并解答. 【解答】解:设乙车间单独制作这批棉学生服需要x天,则每天能制作总量的 ;甲车间单独生产3天完成总量的 ,则每天能制作总量的 , 根据题意,得: +2×( + )=1, 解得x=4.5. 经检验,x=4.5是原方程的根. 答:乙车间单独制作这批棉学生服需要4.5天. 【点评】本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数. 20.△ABC三边的长分别为a、b、c,且满足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,试判定△ABC的形状,并证明你的结论. 【考点】因式分解的应用. 【分析】根据完全平方公式,可得非负数的和为零,可得每个非负数为零,可得a、b、c的值,根据勾股定理逆定理,可得答案. 【解答】解:△ABC是等腰直角三角形. 理由:∵a2﹣4a+b2﹣4 c=4b﹣16﹣c2, ∴(a2﹣4a+4)+(b2﹣4b+4)+(c2﹣4 c+8)=0, 即:(a﹣2)2+(b﹣2)2+(c﹣2 )2=0. ∵(a﹣2)2≥0,(b﹣2)2≥0,(c﹣2 )2≥0, ∴a﹣2=0,b﹣2=0,c﹣2 =0, ∴a=b=2,c=2 , ∵22+22=(2 )2, ∴a2+b2=c2, 所以△ABC是以c为斜边的等腰直角三角形. 【点评】本题考查了因式分解的应用,勾股定理逆定理,利用了非负数的和为零得出a、b、c的值是解题关键. 21.如图,四边形ABCD是平行四边形,并且∠BCD=120°,CB=CE,CD=CF. (1)求证:AE=AF; (2)求∠EAF的度数. 【考点】全等三角形的判定与性质;平行四边形的性质. 【分析】(1)寻找分别含有AE和AF的三角形,通过证明两三角形全等得出AE=AF. (2)在∠BAD中能找出∠EAF=∠BAD﹣(∠BAE+∠FAD),在(1)中我们证出了三角形全等,将∠FAD换成等角∠AEB即可解决. 【解答】(1)证明:∵四边形ABCD是平行四边形,并且∠BCD=120°, ∴∠BCE=∠DCF=60°,CB=DA,CD=BA,∠ABC=∠ADC, ∵CB=CE,CD=CF, ∴△BEC和△DCF都是等边三角形, ∴CB=CE=BE=DA,CD=CF=DF=BA, ∴∠ABC+∠CBE=∠ADC+∠CDF, 即:∠ABE=∠FDA 在△ABE和△FDA中,AB=DF,∠ABE=∠FDA,BE=DA, ∴△ABE≌△FDA (SAS), ∴AE=AF. (2)解:∵在△ABE中,∠ABE=∠ABC+∠CBE=60°+60°=120°, ∴∠BAE+∠AEB=60°, ∵∠AEB=∠FAD, ∴∠BAE+∠FAD=60°, ∵∠BAD=∠BCD=120°, ∴∠EAF=∠BAD﹣(∠BAE+∠FAD)=120°﹣60°=60°. 答:∠EAF的度数为60°. 【点评】本题考查全等三角形的判定与性质,解题的关键是寻找合适的全等三角形,通过寻找等量关系证得全等,从而得出结论. 22.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2,善于思考的小明进行了以下探索: 设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m . a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b 的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当a、b、m、n均为正整数时,若a+b =(m+n )2,用含m、n的式子分别表示a,b,得a= m2+3n2 ,b= 2mn . (2)利用所探索的结论,用完全平方式表示出: = (2+ )2 . (3)请化简: . 【考点】二次根式的性质与化简. 【专题】阅读型. 【分析】(1)利用已知直接去括号进而得出a,b的值; (2)直接利用完全平方公式,变形得出答案; (3)直接利用完全平方公式,变形化简即可. 【解答】解:(1)∵a+b =(m+n )2, ∴a+b =(m+n )2=m2+3n2+2 mn, ∴a=m2+3n2,b=2mn; 故答案为:m2+3n2;2mn; (2) =(2+ )2; 故答案为:(2+ )2; (3)∵12+6 =(3+ )2, ∴ = =3+ .

文章TAG:
八年 八年级 年级 上册 八年级上册数学试卷 帮忙出一份 要答案
大家都在看
祝福老师的贺卡,38节祝福老师的贺卡
2023-03-24
出国的好处,孩子出国的好处
2023-03-29
同学聚会策划方案,毕业30年同学聚会策划方案
2023-04-02
长期多次签证,从马国入境香港需要什么准证?
2023-04-06
签证官如何查个人资料,美国签证网上填写的历史资料能查到吗
2023-04-06
动能定理
2023-04-10
普通话证有用吗,大学生考普通话证有用吗
2023-04-15
高三可以出国留学吗,高三学生是否可以选择海外留学?
2023-04-27
数学评语
2023-05-07
运动心得体会50字,我运动我健康我快乐长跑体会
2023-05-08
介绍自己简历,按摩师介绍自己简历
2023-05-09
生命的旅途,人生有两条路选择是否辉煌?
2023-05-10
西南大学算名校吗,西南大学:未来名校的崛起
2023-05-13
不得好死的意思,遂不得死什么意思解释
2023-05-16
百度法律咨询,百度律师咨询:在线咨询法律问题,解决您的烦恼
2023-05-20