本文目录一览

1,数学诱导公式

sin(π/4+3x)=cos(π/2-(π/4+3x)),所以就是结果了

数学诱导公式

2,数学诱导公式

k(π/2),看k是奇数还是偶数,至于符号看象限是什么意思, 比如tan(π-(一角度))将那一角度看成锐角,π-锐角在第几象限根据tan.cos.sin决定符号
符号sina上为正cosa右为正tana一三为正

数学诱导公式

3,诱导公式

s、c表示Sin、Cos!1)、两用诱导公式。s(3兀-a)=s[2兀 (兀-a)]=s(丌-a)=sa=Sina。则原式=(sa)^2。2)、两用诱导公式。c(-a-兀)=c[-(兀 a)]=c(兀 a)=-ca。原式=(-ca)^3=-(ca)^3=-(Cosa)^3。
sinα

诱导公式

4,诱导公式是什么

诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(pi/2-a)=cos(a) cos(pi/2-a)=sin(a) sin(pi/2+a)=cos(a) cos(pi/2+a)=-sin(a) sin(pi-a)=sin(a) cos(pi-a)=-cos(a) sin(pi+a)=-sin(a) cos(pi+a)=-cos(a) tgA=tanA=sinA/cosA

5,所有的诱导公式

sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα

6,三角函数的诱导公式有哪些

三角函数的诱导公式:公式—∶终边相同的角的同—三角函数的值相等、公式二∶T÷α的三角函数值与α的三角函数值之间的关系、公式三:任意角α与-α的三角函数值之间的关系、公式四:利用公式二和公式三可以得到r-α与α的三角函数值之间的关系、公式五:利用公式—和公式三可以得到2T-α与α的三角函数值之间的关系、公式六:T/2±α与α的三角函数值之间的关系。三角函数的诱导公式是指三角函数中,利用周期性将角度比较大的三角函数,转换为角度比较小的三角函数的公式。诱导公式有六组,共54个。三角函数诱导公式(Induction formula)是一种数学公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。包括一些常用的公式和和差化积公式。公式—∶终边相同的角的同—三角函数的值相等、公式二∶T÷α的三角函数值与α的三角函数值之间的关系、公式三:任意角α与-α的三角函数值之间的关系、公式四:利用公式二和公式三可以得到r-α与α的三角函数值之间的关系、公式五:利用公式—和公式三可以得到2T-α与α的三角函数值之间的关系、公式六:T/2±α与α的三角函数值之间的关系。诱导公式记忆口诀:“奇变偶不变,符号看象限”。“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间上小于零,所以右边符号为负,所以右边为-sinα。符号判断口诀:全,S,T,C,正。这五个字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。另一种口诀:正弦一二切一三,余弦一四紧相连,言之为正。

7,高中数学诱导公式有哪些谢谢回答

★诱导公式★ 常用的诱导公式有以下几组:(公式一~公式五函数名未改变, 公式六函数名发生改变) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: 弧度制下的角的表示: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 角度制下的角的表示: sin (α+k·360°)=sinα(k∈Z) cos(α+k·360°)=cosα(k∈Z) tan (α+k·360°)=tanα(k∈Z) cot(α+k·360°)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: 弧度制下的角的表示: sin(π+α)=-sinα (k∈Z) cos(π+α)=-cosα(k∈Z) tan(π+α)=tanα(k∈Z) cot(π+α)=cotα(k∈Z) 角度制下的角的表示: sin(180°+α)=-sinα(k∈Z) cos(180°+α)=-cosα(k∈Z) tan(180°+α)=tanα(k∈Z) cot(180°+α)=cotα(k∈Z) 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα(k∈Z) cos(-α)=cosα(k∈Z) tan(-α)=-tanα(k∈Z) cot(-α)=-cotα(k∈Z) 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: 弧度制下的角的表示: sin(π-α)=sinα(k∈Z) cos(π-α)=-cosα(k∈Z) tan(π-α)=-tanα(k∈Z) cot(π-α)=-cotα(k∈Z) 角度制下的角的表示: sin(90°-α)=sinα(k∈Z) cos(90°-α)=-cosα(k∈Z) tan(90°-α)=-tanα(k∈Z) cot(90°-α)=-cotα(k∈Z) 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: 弧度制下的角的表示: sin(2π-α)=-sinα(k∈Z) cos(2π-α)=cosα(k∈Z) tan(2π-α)=-tanα(k∈Z) cot(2π-α)=-cotα(k∈Z) 角度制下的角的表示: sin(360°-α)=-sinα(k∈Z) cos(360°-α)=cosα(k∈Z) tan(360°-α)=-tanα(k∈Z) cot(360°-α)=-cotα(k∈Z) 小结:以上五组公式可简记为:函数名不变,符号看象限. 即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。 公式六: π/2±α 及3π/2±α与α的三角函数值之间的关系:(⒈~⒋) ⒈ π/2+α与α的三角函数值之间的关系 弧度制下的角的表示: sin(π/2+α)=cosα(k∈Z) cos(π/2+α)=-sinα(k∈Z) tan(π/2+α)=-cotα(k∈Z) cot(π/2+α)=-tanα(k∈Z) 角度制下的角的表示: sin(90°+α)=cosα(k∈Z) cos(90°+α)=-sinα(k∈Z) tan(90°+α)=-cotα(k∈Z) cot(90°+α)=-tanα(k∈Z) ⒉ π/2-α与α的三角函数值之间的关系 弧度制下的角的表示: sin(π/2-α)=cosα(k∈Z) cos(π/2-α)=sinα(k∈Z) tan(π/2-α)=cotα(k∈Z) cot(π/2-α)=tanα(k∈Z) 角度制下的角的表示: sin(90°-α)=cosα(k∈Z) cos (90°-α)=sinα(k∈Z) tan(90°-α)=cotα(k∈Z) cot(90°-α)=tanα(k∈Z) ⒊ 3π/2+α与α的三角函数值之间的关系 弧度制下的角的表示: sin(3π/2+α)=-cosα(k∈Z) cos(3π/2+α)=sinα(k∈Z) tan(3π/2+α)=-cotα(k∈Z) cot(3π/2+α)=-tanα(k∈Z) 角度制下的角的表示: sin(270°+α)=-cosα(k∈Z) cos(270°+α)=sinα(k∈Z) tan(270°+α)=-cotα(k∈Z) cot(270°+α)=-tanα(k∈Z) ⒋ 3π/2-α与α的三角函数值之间的关系 弧度制下的角的表示: sin(3π/2-α)=-cosα(k∈Z) cos(3π/2-α)=-sinα(k∈Z) tan(3π/2-α)=cotα(k∈Z) cot(3π/2-α)=tanα(k∈Z) 角度制下的角的表示: sin(270°-α)=-cosα(k∈Z) cos(270°-α)=-sinα(k∈Z) tan(270°-α)=cotα(k∈Z) cot(270°-α)=tanα(k∈Z) 温馨提示:1.在做题目的时候,最好将α看成是锐角。 2.k∈Z 总结记忆:奇变偶不变,符号看象限。

文章TAG:诱导  诱导公式  公式  数学  诱导公式  
下一篇