本文目录一览

1,三角函数积化和差和差化积公式

和差化积sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]积化和差sinxsiny=-1/2[cos(x+y)-cos(x-y)]cosxcosy=1/2[cos(x+y)+cos(x-y)]sinxcosy=1/2[sin(x+y)+sin(x-y)]cosxsiny=1/2[sin(x+y)-sin(x-y)]

三角函数积化和差和差化积公式

2,积化和差和差化积公式

三角函数的和差化积公式 sinα+sinβ=2sin(α+β)/2·cos(α-β)/2 sinα-sinβ=2cos(α+β)/2·sin(α-β)/2 cosα+cosβ=2cos(α+β)/2·cos(α-β)/2 cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2 三角函数的积化和差公式 sinα ·cosβ=1/2 [sin(α+β)+sin(α-β)] cosα ·sinβ=1/2 [sin(α+β)-sin(α-β)] cosα ·cosβ=1/2 [cos(α+β)+cos(α-β)] sinα ·sinβ=-1/2 [cos(α+β)-cos(α-β)]
sinαcosβ=[sin(α+β)+sin(α-β)] 和差化积公式 sinθ+sinφ=2sincos sinθ-sinφ=2cossin cosθ+cosφ=2coscos

积化和差和差化积公式

3,和差化积公式是

sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】 
sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]    sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]    cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]   cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]
和差化积公式: sinθ sinφ=2sin[(θ φ)/2]cos[(θ-φ)/2] sinθ-sinφ=2cos[(θ φ)/2]sin[(θ-φ)/2] cosθ cosφ=2cos[(θ φ)/2]cos[(θ-φ)/2] cosθ-cosφ=-2sin[(θ φ)/2]sin[(θ-φ)/2]

和差化积公式是

4,什么叫和差化积

这个概念是三角函数里面的。是三角函数和公式转化乘积公式的说法。是一个公式。
正弦、余弦的和差化积公式指高中数学三角函数部分的一组恒等式sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】 希望我的回答对您有帮助,满意请采纳,谢谢。
1、积化和差公式: sinαsinβ=- [cos(α β)-cos(α-β)] cosαcosβ= [cos(α β) cos(α-β)] sinαcosβ= [sin(α β) sin(α-β)] cosαsinβ= [sin(α β)-sin(α-β)] 2、和差化积公式 sinθ sinφ=2sin cos sinθ-sinφ=2cos sin cosθ cosφ=2cos cos cosθ-cosφ=-2sin sin
积化和差,指初等数学三角函数部分的一组恒等式。可以通过展开角的和差恒等式的手段来证明。记忆方法积化和差公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了特点各自的简单记忆方法。这一点最简单的记忆方法是通过三角函数的值域来判断。sin和cos的值域都是[-1,1],其和差的值域应该 是[-2,2],而积的值域却是[-1,1],因此除以2是必须的。也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:cos(α-β)-cos(α+β)=(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)=2sinαsinβ故最后需要除以2。

5,和差化积是什么

正弦、余弦的和差化积公式  指高中数学三角函数部分的一组恒等式   sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]   sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]   cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]   cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】    以上四组公式可以由积化和差公式推导得到 证明过程  sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程   因为   sin(α+β)=sin αcos β+cos αsin β,   sin(α-β)=sin αcos β-cos αsin β,   将以上两式的左右两边分别相加,得   sin(α+β)+sin(α-β)=2sin αcos β,   设 α+β=θ,α-β=φ   那么   α=(θ+φ)/2, β=(θ-φ)/2   把α,β的值代入,即得   sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2] 编辑本段正切的和差化积  tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)   cotα±cotβ=sin(β±α)/(sinα·sinβ)   tanα+cotβ=cos(α-β)/(cosα·sinβ)   tanα-cotβ=-cos(α+β)/(cosα·sinβ)   证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ   =(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)   =sin(α±β)/(cosα·cosβ)=右边   ∴等式成立 编辑本段注意事项  在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次   口诀   正加正,正在前,余加余,余并肩   正减正,余在前,余减余,负正弦   反之亦然   生动的口诀:(和差化积)

6,和差化积公式是什么

1、积化和差公式:   sinαsinβ=- [cos(α+β)-cos(α-β)]   cosαcosβ= [cos(α+β)+cos(α-β)]   sinαcosβ= [sin(α+β)+sin(α-β)]   cosαsinβ= [sin(α+β)-sin(α-β)]   2、和差化积公式   sinθ+sinφ=2sin cos   sinθ-sinφ=2cos sin   cosθ+cosφ=2cos cos   cosθ-cosφ=-2sin sin
和差化积   sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]   sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]   cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]   cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]   tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)   tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)   积化和差   sinαsinβ = [cos(α-β)-cos(α+β)]/2   cosαcosβ = [cos(α+β)+cos(α-β)]2   sinαcosβ = [sin(α+β)+sin(α-β)]/2   cosαsinβ = [sin(α+β)-sin(α-β)]/2
和差化积公式 sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2] sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2] cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2] 积化和差公式 sinαcosβ=[sin(α+β)+sin(α-β)]/2 cosαsinβ=[sin(α+β)-sin(α-β)]/2 cosαcosβ=[cos(α+β)+cos(α-β)]/2 sinαsinβ=-[cos(α+β)-cos(α-β)]/2

7,和差化积积化差等公式为

积化和差sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2和差化积sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)和差化积公式推导 附推导: 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2 这样,我们就得到了积化和差的四个公式: sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2 好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式. 我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2 把a,b分别用x,y表示就可以得到和差化积的四个公式: sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

文章TAG:和差化积  三角  三角函数  函数  和差化积  
下一篇